Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

AI-guided few-shot inverse design of HDP-mimicking polymers against drug-resistant bacteria

Urheber*innen

Wu,  Tianyu
External Organizations;

Zhou,  Min
External Organizations;

Zou,  Jingcheng
External Organizations;

Chen,  Qi
External Organizations;

Qian,  Feng
External Organizations;

/persons/resource/Juergen.Kurths

Kurths,  Jürgen
Potsdam Institute for Climate Impact Research;

Liu,  Runhui
External Organizations;

Tang,  Yang
External Organizations;

Externe Ressourcen
Volltexte (frei zugänglich)

wu_2024_s41467-024-50533-4.pdf
(Verlagsversion), 65MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Wu, T., Zhou, M., Zou, J., Chen, Q., Qian, F., Kurths, J., Liu, R., Tang, Y. (2024): AI-guided few-shot inverse design of HDP-mimicking polymers against drug-resistant bacteria. - Nature Communications, 15, 6288.
https://doi.org/10.1038/s41467-024-50533-4


Zitierlink: https://publications.pik-potsdam.de/pubman/item/item_30669
Zusammenfassung
Host defense peptide (HDP)-mimicking polymers are promising therapeutic alternatives to antibiotics and have large-scale untapped potential. Artificial intelligence (AI) exhibits promising performance on large-scale chemical-content design, however, existing AI methods face difficulties on scarcity data in each family of HDP-mimicking polymers (<102), much smaller than public polymer datasets (>105), and multi-constraints on properties and structures when exploring high-dimensional polymer space. Herein, we develop a universal AI-guided few-shot inverse design framework by designing multi-modal representations to enrich polymer information for predictions and creating a graph grammar distillation for chemical space restriction to improve the efficiency of multi-constrained polymer generation with reinforcement learning. Exampled with HDP-mimicking β-amino acid polymers, we successfully simulate predictions of over 105 polymers and identify 83 optimal polymers. Furthermore, we synthesize an optimal polymer DM0.8iPen0.2 and find that this polymer exhibits broad-spectrum and potent antibacterial activity against multiple clinically isolated antibiotic-resistant pathogens, validating the effectiveness of AI-guided design strategy.