Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Reinforcement learning optimizes power dispatch in decentralized power grid

Urheber*innen

Lee,  Yongsun
External Organizations;

Choi,  Hoyun
External Organizations;

Pagnier,  Laurent
External Organizations;

Kim,  Cook Hyun
External Organizations;

Lee,  Jongshin
External Organizations;

Jhun,  Bukyoung
External Organizations;

Kim,  Heetae
External Organizations;

/persons/resource/Juergen.Kurths

Kurths,  Jürgen
Potsdam Institute for Climate Impact Research;

Kahng,  B.
External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PIKpublic verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Lee, Y., Choi, H., Pagnier, L., Kim, C. H., Lee, J., Jhun, B., Kim, H., Kurths, J., Kahng, B. (2024): Reinforcement learning optimizes power dispatch in decentralized power grid. - Chaos, Solitons and Fractals, 186, 115293.
https://doi.org/10.1016/j.chaos.2024.115293


Zitierlink: https://publications.pik-potsdam.de/pubman/item/item_30714
Zusammenfassung
Effective frequency control in power grids has become increasingly important with the increasing demand for renewable energy sources. Here, we propose a novel strategy for resolving this challenge using graph convolutional proximal policy optimization (GC-PPO). The GC-PPO method can optimally determine how much power individual buses dispatch to reduce frequency fluctuations across a power grid. We demonstrate its efficacy in controlling disturbances by applying the GC-PPO to the power grid of the UK. The performance of GC-PPO is outstanding compared to the classical methods. This result highlights the promising role of GC-PPO in enhancing the stability and reliability of power systems by switching lines or decentralizing grid topology.