Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

A few-shot identification method for stochastic dynamical systems based on residual multipeaks adaptive sampling

Urheber*innen

An,  Xiao-Kai
External Organizations;

Du,  Lin
External Organizations;

Jiang,  Feng
External Organizations;

Zhang,  Yu-Jia
External Organizations;

Deng,  Zi-Chen
External Organizations;

/persons/resource/Juergen.Kurths

Kurths,  Jürgen
Potsdam Institute for Climate Impact Research;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

an_2024_073118_1_5.0209779.pdf
(Verlagsversion), 5MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

An, X.-K., Du, L., Jiang, F., Zhang, Y.-J., Deng, Z.-C., Kurths, J. (2024): A few-shot identification method for stochastic dynamical systems based on residual multipeaks adaptive sampling. - Chaos, 34, 7, 073118.
https://doi.org/10.1063/5.0209779


Zitierlink: https://publications.pik-potsdam.de/pubman/item/item_30728
Zusammenfassung
Neural networks are popular data-driven modeling tools that come with high data collection costs. This paper proposes a residual-based multipeaks adaptive sampling (RMAS) algorithm, which can reduce the demand for a large number of samples in the identification of stochastic dynamical systems. Compared to classical residual-based sampling algorithms, the RMAS algorithm achieves higher system identification accuracy without relying on any hyperparameters. Subsequently, combining the RMAS algorithm and neural network, a few-shot identification (FSI) method for stochastic dynamical systems is proposed, which is applied to the identification of a vegetation biomass change model and the Rayleigh–Van der Pol impact vibration model. We show that the RMAS algorithm modifies residual-based sampling algorithms and, in particular, reduces the system identification error by 76% with the same sample sizes. Moreover, the surrogate model accurately predicts the first escape probability density function and the P bifurcation behavior in the systems, with the error of less than 1.59 x 10-2⁠. Finally, the robustness of the FSI method is validated.