Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

A few-shot identification method for stochastic dynamical systems based on residual multipeaks adaptive sampling

Urheber*innen

An,  Xiao-Kai

Du,  Lin

Jiang,  Feng

Zhang,  Yu-Jia

Deng,  Zi-Chen

/persons/resource/Juergen.Kurths

Kurths,  Jürgen
Potsdam Institute for Climate Impact Research;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PIKpublic verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

An, X.-K., Du, L., Jiang, F., Zhang, Y.-J., Deng, Z.-C., Kurths, J. (2024): A few-shot identification method for stochastic dynamical systems based on residual multipeaks adaptive sampling. - Chaos, 34, 7, 073118.
https://doi.org/10.1063/5.0209779


Zitierlink: https://publications.pik-potsdam.de/pubman/item/item_30728
Zusammenfassung
Neural networks are popular data-driven modeling tools that come with high data collection costs. This paper proposes a residual-based multipeaks adaptive sampling (RMAS) algorithm, which can reduce the demand for a large number of samples in the identification of stochastic dynamical systems. Compared to classical residual-based sampling algorithms, the RMAS algorithm achieves higher system identification accuracy without relying on any hyperparameters. Subsequently, combining the RMAS algorithm and neural network, a few-shot identification (FSI) method for stochastic dynamical systems is proposed, which is applied to the identification of a vegetation biomass change model and the Rayleigh–Van der Pol impact vibration model. We show that the RMAS algorithm modifies residual-based sampling algorithms and, in particular, reduces the system identification error by 76% with the same sample sizes. Moreover, the surrogate model accurately predicts the first escape probability density function and the P bifurcation behavior in the systems, with the error of less than 1.59 x 10-2⁠. Finally, the robustness of the FSI method is validated.