Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Spiral wave dynamics in a neuronal network model

Urheber*innen

Souza,  Diogo L M
External Organizations;

Borges,  Fernando S
External Organizations;

/persons/resource/enrique.gabrick

Gabrick,  Enrique C.
Potsdam Institute for Climate Impact Research;

Bentivoglio,  Lucas E
External Organizations;

Protachevicz,  Paulo R
External Organizations;

dos Santos,  Vagner
External Organizations;

Viana,  Ricardo L
External Organizations;

Caldas,  Ibere L
External Organizations;

Iarosz,  Kelly C
External Organizations;

Batista,  Antonio M
External Organizations;

/persons/resource/Juergen.Kurths

Kurths,  Jürgen
Potsdam Institute for Climate Impact Research;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Souza, D. L. M., Borges, F. S., Gabrick, E. C., Bentivoglio, L. E., Protachevicz, P. R., dos Santos, V., Viana, R. L., Caldas, I. L., Iarosz, K. C., Batista, A. M., Kurths, J. (2024): Spiral wave dynamics in a neuronal network model. - Journal of Physics: Complexity, 5, 2, 025010.
https://doi.org/10.1088/2632-072X/ad42f6


Zitierlink: https://publications.pik-potsdam.de/pubman/item/item_30730
Zusammenfassung
Spiral waves are spatial-temporal patterns that can emerge in different systems as heart tissues, chemical oscillators, ecological networks and the brain. These waves have been identified in the neocortex of turtles, rats, and humans, particularly during sleep-like states. Although their functions in cognitive activities remain until now poorly understood, these patterns are related to cortical activity modulation and contribute to cortical processing. In this work, ,we construct a neuronal network layer based on the spatial distribution of pyramidal neurons. Our main goal is to investigate how local connectivity and coupling strength are associated with the emergence of spiral waves. Therefore, we propose a trustworthy method capable of detecting different wave patterns, based on local and global phase order parameters. As a result, we find that the range of connection radius (R) plays a crucial role in the appearance of spiral waves. For R < 20 µm, only asynchronous activity is observed due to small number of connections. The coupling strength () greatly influences the pattern transitions for higher R, where spikes and bursts firing patterns can be observed in spiral and non-spiral waves. Finally, we show that for some values of R and bistable states of wave patterns are obtained.