Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Data-driven global ocean modeling for seasonal to decadal prediction

Urheber*innen

Guo,  Zijie
External Organizations;

Lyu,  Pumeng
External Organizations;

Ling,  Fenghua
External Organizations;

Bai,  Lei
External Organizations;

Luo,  Jing-Jia
External Organizations;

/persons/resource/Niklas.Boers

Boers,  Niklas       
Potsdam Institute for Climate Impact Research;

Yamagata,  Toshio
External Organizations;

Izumo,  Takeshi
External Organizations;

Cravatte,  Sophie
External Organizations;

Capotondi,  Antonietta
External Organizations;

Ouyang,  Wanli
External Organizations;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

Guo_2025_sciadv.adu2488.pdf
(Verlagsversion), 9MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Guo, Z., Lyu, P., Ling, F., Bai, L., Luo, J.-J., Boers, N., Yamagata, T., Izumo, T., Cravatte, S., Capotondi, A., Ouyang, W. (2025): Data-driven global ocean modeling for seasonal to decadal prediction. - Science Advances, 11, 33, eadu2488.
https://doi.org/10.1126/sciadv.adu2488


Zitierlink: https://publications.pik-potsdam.de/pubman/item/item_32752
Zusammenfassung
Accurate modeling of ocean dynamics is crucial for enhancing our understanding of complex ocean circulation processes, predicting climate variability, and tackling challenges posed by climate change. Although great efforts have been made to improve traditional numerical models, predicting global ocean variability over multiyear scales remains challenging. Here, we propose ORCA-DL (Oceanic Reliable foreCAst via Deep Learning), a data-driven three-dimensional ocean model for seasonal to decadal prediction of global ocean dynamics. ORCA-DL accurately simulates the three-dimensional structure of global ocean dynamics with high physical consistency and outperforms state-of-the-art numerical models in capturing extreme events, including El Niño–Southern Oscillation and upper ocean heat waves. Moreover, ORCA-DL stably emulates ocean dynamics at decadal timescales, demonstrating its potential even for skillful decadal predictions and climate projections. Our results demonstrate the high potential of data-driven models for providing efficient and accurate global ocean modeling and prediction.