Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Impact of Opinion-Driven Adaptive Vigilance on Virus Spread and Opinion Evolution

Urheber*innen

Zhai,  Shidong
External Organizations;

Yin,  Shijie
External Organizations;

Sun,  Fenglan
External Organizations;

/persons/resource/Juergen.Kurths

Kurths,  Jürgen
Potsdam Institute for Climate Impact Research;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Zhai, S., Yin, S., Sun, F., Kurths, J. (2025): Impact of Opinion-Driven Adaptive Vigilance on Virus Spread and Opinion Evolution. - IEEE Transactions on Systems, Man, and Cybernetics: Systems, 55, 8, 5596-5606.
https://doi.org/10.1109/TSMC.2025.3573298


Zitierlink: https://publications.pik-potsdam.de/pubman/item/item_32765
Zusammenfassung
In order to investigate how different levels of vigilance affect the spread of a virus and changes in public opinion, this article introduces a network-based susceptible-exposed-infectious-vigilant (SEIV)-Opinion model. The model incorporates vigilance influence functions that depend on infection and recovery rates, which are associated with opinion states. A basic reproduction number dependent on both the viral transmission state and public opinion dynamics is constructed to analyze the conditions for virus eradication or pandemic persistence. These findings indicate that during severe epidemics, people are very concerned about the epidemic, leading to an increased vigilance, thereby significantly slowing the spread of the virus. On the other hand, during milder epidemics, people do not respond adequately to the threat of the epidemic, and thus are less vigilant and have less impact on the spread of the virus. These insights correlate closely with real-world trends. This article uses numerical simulations to demonstrate and confirm these patterns under various conditions.