Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Quantifying Disorder in Data

Urheber*innen
/persons/resource/JoaoVitor.VieiraFlauzino

Vieira Flauzino,  Joao Vitor
Potsdam Institute for Climate Impact Research;

Prado,  Thiago Lima
External Organizations;

/persons/resource/Marwan

Marwan,  Norbert       
Potsdam Institute for Climate Impact Research;

/persons/resource/Juergen.Kurths

Kurths,  Jürgen
Potsdam Institute for Climate Impact Research;

Lopes,  Sergio Roberto
External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Vieira Flauzino, J. V., Prado, T. L., Marwan, N., Kurths, J., Lopes, S. R. (2025): Quantifying Disorder in Data. - Physical Review Letters, 135, 9, 097401.
https://doi.org/10.1103/1y98-x33s


Zitierlink: https://publications.pik-potsdam.de/pubman/item/item_33283
Zusammenfassung
The quantification of disorder in data remains a fundamental challenge in science, as many phenomena yield short length datasets with order-disorder behavior, significant (un)correlated fluctuations, and indistinguishable characteristics even when arising from distinct natures, such as chaotic or stochastic processes. In this Letter, we propose a novel method to directly quantify disorder in data through recurrence microstate analysis, showing that maximizing this measure is essential for its optimal estimation. Our approach reveals that the disorder condition corresponds to the action of the symmetric group on recurrence space, producing classes of equiprobable recurrence microstates. By leveraging information entropy, we define a robust quantifier that reliably differentiates between chaotic, correlated, and uncorrelated stochastic signals even using just small time series. Additionally, it uncovers the characteristics of corrupting noise in dynamical systems. As an application, we show that disorder minima over time often align with well-known stage transitions of the Cenozoic era, indicating periods of dominant drivers in paleoclimatic data.