Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Small-signal stability of power systems with voltage droop

Urheber*innen
/persons/resource/jakobn

Niehues,  Jakob       
Potsdam Institute for Climate Impact Research;

Delabays,  Robin
External Organizations;

/persons/resource/buettner

Büttner,  Anna
Potsdam Institute for Climate Impact Research;

/persons/resource/frank.hellmann

Hellmann,  Frank       
Potsdam Institute for Climate Impact Research;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Niehues, J., Delabays, R., Büttner, A., Hellmann, F. (2025 online): Small-signal stability of power systems with voltage droop. - IEEE Transactions on Power Systems.
https://doi.org/10.1109/TPWRS.2025.3613855


Zitierlink: https://publications.pik-potsdam.de/pubman/item/item_33425
Zusammenfassung
Guaranteeing the stability of future, inverter-dominated power grids is a central challenge for grid operators, especially when devices from multiple vendors interact. In this work, we derive novel conditions that guarantee small-signal stability. They are independent of device specifics and are locally verifiable in the neighborhood of each bus. The inverters can be highly heterogeneous and implement any control law of frequency, voltage amplitude, active and reactive power, and internal states. The only structural assumptions we make are that the control implements an exact droop relationship between voltage magnitude and reactive power, and that we have a constant R/X ratio throughout the grid. When applied to established models of control designs, we reproduce and generalize established results. To achieve this, we build on the recent small-phase theorem and adapt it to networked systems. The central novelty on the grid modeling side is the use of complex frequency to capture the relevant dynamical behavior of the inverters. While the conditions are sufficient but not necessary, we find that they are not overly conservative in practice. Furthermore, we find that they can identify individual inverters that are the cause of instability.