English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Consistent negative response of US crops to high temperatures in observations and crop models

Authors
/persons/resource/schauberger

Schauberger,  Bernhard
Potsdam Institute for Climate Impact Research;

Archontoulis,  S.
External Organizations;

Arneth,  A.
External Organizations;

Balkovič,  J.
External Organizations;

Ciais,  P.
External Organizations;

Deryng,  D.
External Organizations;

Elliott,  J.
External Organizations;

Folberth,  C.
External Organizations;

Khabarov,  N.
External Organizations;

/persons/resource/Christoph.Mueller

Müller,  Christoph
Potsdam Institute for Climate Impact Research;

Pugh,  T. A. M.
External Organizations;

/persons/resource/Rolinski

Rolinski,  Susanne
Potsdam Institute for Climate Impact Research;

/persons/resource/Sibyll.Schaphoff

Schaphoff,  Sibyll
Potsdam Institute for Climate Impact Research;

Schmid,  E.
External Organizations;

Wang,  X.
External Organizations;

Schlenker,  W.
External Organizations;

/persons/resource/Katja.Frieler

Frieler,  Katja
Potsdam Institute for Climate Impact Research;

External Ressource
No external resources are shared
Fulltext (public)

7310oa.pdf
(Publisher version), 2MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Schauberger, B., Archontoulis, S., Arneth, A., Balkovič, J., Ciais, P., Deryng, D., Elliott, J., Folberth, C., Khabarov, N., Müller, C., Pugh, T. A. M., Rolinski, S., Schaphoff, S., Schmid, E., Wang, X., Schlenker, W., Frieler, K. (2017): Consistent negative response of US crops to high temperatures in observations and crop models. - Nature Communications, 8, 13931.
https://doi.org/10.1038/ncomms13931


Cite as: https://publications.pik-potsdam.de/pubman/item/item_21110
Abstract
High temperatures are detrimental to crop yields and could lead to global warming-driven reductions in agricultural productivity. To assess future threats, the majority of studies used process-based crop models, but their ability to represent effects of high temperature has been questioned. Here we show that an ensemble of nine crop models reproduces the observed average temperature responses of US maize, soybean and wheat yields. Each day >30 °C diminishes maize and soybean yields by up to 6% under rainfed conditions. Declines observed in irrigated areas, or simulated assuming full irrigation, are weak. This supports the hypothesis that water stress induced by high temperatures causes the decline. For wheat a negative response to high temperature is neither observed nor simulated under historical conditions, since critical temperatures are rarely exceeded during the growing season. In the future, yields are modelled to decline for all three crops at temperatures >30 °C. Elevated CO2 can only weakly reduce these yield losses, in contrast to irrigation.