Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Simulating the effect of tillage practices with the global ecosystem model LPJmL (version 5.0-tillage)

Urheber*innen
/persons/resource/femke.lutz

Lutz,  Femke
Potsdam Institute for Climate Impact Research;

/persons/resource/herzfeld.tobias

Herzfeld,  Tobias
Potsdam Institute for Climate Impact Research;

/persons/resource/Jens.Heinke

Heinke,  Jens
Potsdam Institute for Climate Impact Research;

/persons/resource/Rolinski

Rolinski,  Susanne
Potsdam Institute for Climate Impact Research;

/persons/resource/Sibyll.Schaphoff

Schaphoff,  Sibyll
Potsdam Institute for Climate Impact Research;

/persons/resource/Werner.von.Bloh

von Bloh,  Werner
Potsdam Institute for Climate Impact Research;

Stoorvogel,  J. J.
External Organizations;

/persons/resource/Christoph.Mueller

Müller,  Christoph
Potsdam Institute for Climate Impact Research;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)

8537oa.pdf
(Verlagsversion), 4MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Lutz, F., Herzfeld, T., Heinke, J., Rolinski, S., Schaphoff, S., von Bloh, W., Stoorvogel, J. J., Müller, C. (2019): Simulating the effect of tillage practices with the global ecosystem model LPJmL (version 5.0-tillage). - Geoscientific Model Development, 12, 6, 2419-2440.
https://doi.org/10.5194/gmd-12-2419-2019


Zitierlink: https://publications.pik-potsdam.de/pubman/item/item_23224
Zusammenfassung
The effects of tillage on soil properties, crop productivity, and global greenhouse gas emissions have been discussed in the last decades. Global ecosystem models have limited capacity to simulate the various effects of tillage. With respect to the decomposition of soil organic matter, they either assume a constant increase due to tillage or they ignore the effects of tillage. Hence, they do not allow for analysing the effects of tillage and cannot evaluate, for example, reduced tillage or no tillage (referred to here as “no-till”) practises as mitigation practices for climate change. In this paper, we describe the implementation of tillage-related practices in the global ecosystem model LPJmL. The extended model is evaluated against reported differences between tillage and no-till management on several soil properties. To this end, simulation results are compared with published meta-analyses on tillage effects. In general, the model is able to reproduce observed tillage effects on global, as well as regional, patterns of carbon and water fluxes. However, modelled N fluxes deviate from the literature values and need further study. The addition of the tillage module to LPJmL5 opens up opportunities to assess the impact of agricultural soil management practices under different scenarios with implications for agricultural productivity, carbon sequestration, greenhouse gas emissions, and other environmental indicators.