English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Available and missing data to model impact of climate change on European forests

Authors

Ruiz-Benito,  P.
External Organizations;

Vacchiano,  G.
External Organizations;

Lines,  E. R.
External Organizations;

/persons/resource/Reyer

Reyer,  Christopher P. O.
Potsdam Institute for Climate Impact Research;

Ratcliffe,  S.
External Organizations;

Morin,  X.
External Organizations;

Hartig,  F.
External Organizations;

Mäkelä,  A.
External Organizations;

Yousefpour,  R.
External Organizations;

Chaves,  J. E.
External Organizations;

Palacios-Orueta,  A.
External Organizations;

Benito-Garzón,  M.
External Organizations;

Morales-Molino,  C.
External Organizations;

Camarero,  J. J.
External Organizations;

Jump,  A. S.
External Organizations;

Kattge,  J.
External Organizations;

Lehtonen,  A.
External Organizations;

Ibrom,  A.
External Organizations;

Owen,  H. J. F.
External Organizations;

Zavala,  M. A.
External Organizations;

External Ressource
No external resources are shared
Fulltext (public)

8635oa.pdf
(Publisher version), 2MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Ruiz-Benito, P., Vacchiano, G., Lines, E. R., Reyer, C. P. O., Ratcliffe, S., Morin, X., Hartig, F., Mäkelä, A., Yousefpour, R., Chaves, J. E., Palacios-Orueta, A., Benito-Garzón, M., Morales-Molino, C., Camarero, J. J., Jump, A. S., Kattge, J., Lehtonen, A., Ibrom, A., Owen, H. J. F., Zavala, M. A. (2020): Available and missing data to model impact of climate change on European forests. - Ecological Modelling, 416, 108870.
https://doi.org/10.1016/j.ecolmodel.2019.108870


Cite as: https://publications.pik-potsdam.de/pubman/item/item_23393
Abstract
Climate change is expected to cause major changes in forest ecosystems during the 21st century and beyond. To assess forest impacts from climate change, the existing empirical information must be structured, harmonised and assimilated into a form suitable to develop and test state-of-the-art forest and ecosystem models. The combination of empirical data collected at large spatial and long temporal scales with suitable modelling approaches is key to understand forest dynamics under climate change. To facilitate data and model integration, we identified major climate change impacts observed on European forest functioning and summarised the data available for monitoring and predicting such impacts. Our analysis of c. 120 forest-related databases (including information from remote sensing, vegetation inventories, dendroecology, palaeoecology, eddy-flux sites, common garden experiments and genetic techniques) and 50 databases of environmental drivers highlights a substantial degree of data availability and accessibility. However, some critical variables relevant to predicting European forest responses to climate change are only available at relatively short time frames (up to 10-20 years), including intra-specific trait variability, defoliation patterns, tree mortality and recruitment. Moreover, we identified data gaps or lack of data integration particularly in variables related to local adaptation and phenotypic plasticity, dispersal capabilities and physiological responses. Overall, we conclude that forest data availability across Europe is improving, but further efforts are needed to integrate, harmonise and interpret this data (i.e. making data useable for non-experts). Continuation of existing monitoring and networks schemes together with the establishments of new networks to address data gaps is crucial to rigorously predict climate change impacts on European forests.