Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Influence of delayed conductance on neuronal synchronization

Urheber*innen

Protachevicz,  Paulo R.
External Organizations;

Borges,  Fernando S.
External Organizations;

Iarosz,  Kelly C.
External Organizations;

Baptista,  Murilo S.
External Organizations;

Lameu,  Ewandson L.
External Organizations;

Hansen,  Matheus
External Organizations;

Caldas,  Iberê L.
External Organizations;

Szezech,  José D.
External Organizations;

Batista,  Antonio M.
External Organizations;

/persons/resource/Juergen.Kurths

Kurths,  Jürgen
Potsdam Institute for Climate Impact Research;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)

fphys-11-01053.pdf
(Verlagsversion), 994KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Protachevicz, P. R., Borges, F. S., Iarosz, K. C., Baptista, M. S., Lameu, E. L., Hansen, M., Caldas, I. L., Szezech, J. D., Batista, A. M., Kurths, J. (2020): Influence of delayed conductance on neuronal synchronization. - Frontiers in Physiology, 11, 1053.
https://doi.org/10.3389/fphys.2020.01053


Zitierlink: https://publications.pik-potsdam.de/pubman/item/item_24670
Zusammenfassung
In the brain, the excitation-inhibition balance prevents abnormal synchronous behavior. However, known synaptic conductance intensity can be insufficient to account for the undesired synchronization. Due to this fact, we consider time delay in excitatory and inhibitory conductances and study its effect on the neuronal synchronization. In this work, we build a neuronal network composed of adaptive integrate-and-fire neurons coupled by means of delayed conductances. We observe that the time delay in the excitatory and inhibitory conductivities can alter both the state of the collective behavior (synchronous or desynchronous) and its type (spike or burst). For the weak coupling regime, we find that synchronization appears associated with neurons behaving with extremes highest and lowest mean firing frequency, in contrast to when desynchronization is present when neurons do not exhibit extreme values for the firing frequency. Synchronization can also be characterized by neurons presenting either the highest or the lowest levels in the mean synaptic current. For the strong coupling, synchronous burst activities can occur for delays in the inhibitory conductivity. For approximately equal-length delays in the excitatory and inhibitory conductances, desynchronous spikes activities are identified for both weak and strong coupling regimes. Therefore, our results show that not only the conductance intensity, but also short delays in the inhibitory conductance are relevant to avoid abnormal neuronal synchronization.