Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Hysteresis of tropical forests in the 21st century

Urheber*innen

Staal,  Arie
External Organizations;

Fetzer,  Ingo
External Organizations;

Wang-Erlandsson,  Lan
External Organizations;

Bosmans,  Joyce H. C.
External Organizations;

Dekker,  Stefan C.
External Organizations;

van Nes,  Egbert H.
External Organizations;

/persons/resource/johan.rockstrom

Rockström,  Johan
Potsdam Institute for Climate Impact Research;

Tuinenburg,  Obbe A.
External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)

24891oa.pdf
(Verlagsversion), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Staal, A., Fetzer, I., Wang-Erlandsson, L., Bosmans, J. H. C., Dekker, S. C., van Nes, E. H., Rockström, J., Tuinenburg, O. A. (2020): Hysteresis of tropical forests in the 21st century. - Nature Communications, 11, 4978.
https://doi.org/10.1038/s41467-020-18728-7


Zitierlink: https://publications.pik-potsdam.de/pubman/item/item_24891
Zusammenfassung
Tropical forests modify the conditions they depend on through feedbacks at different spatial scales. These feedbacks shape the hysteresis (history-dependence) of tropical forests, thus controlling their resilience to deforestation and response to climate change. Here, we determine the emergent hysteresis from local-scale tipping points and regional-scale forest-rainfall feedbacks across the tropics under the recent climate and a severe climate-change scenario. By integrating remote sensing, a global hydrological model, and detailed atmospheric moisture tracking simulations, we find that forest-rainfall feedback expands the geographic range of possible forest distributions, especially in the Amazon. The Amazon forest could partially recover from complete deforestation, but may lose that resilience later this century. The Congo forest currently lacks resilience, but is predicted to gain it under climate change, whereas forests in Australasia are resilient under both current and future climates. Our results show how tropical forests shape their own distributions and create the climatic conditions that enable them. Tropical rainforests partly create their own climatic conditions by promoting precipitation, therefore rainforest losses may trigger dramatic shifts. Here the authors combine remote sensing, hydrological modelling, and atmospheric moisture tracking simulations to assess forest-rainfall feedbacks in three major tropical rainforest regions on Earth and simulate potential changes under a severe climate change scenario.