Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Characterizing stochastic resonance in a triple cavity

Urheber*innen

Mei ,  Ruoxing
Potsdam Institute for Climate Impact Research;

/persons/resource/yong.xu

Xu,  Yong
External Organizations;

Li,  Yongge
External Organizations;

/persons/resource/Juergen.Kurths

Kurths,  Jürgen
Potsdam Institute for Climate Impact Research;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Mei, R., Xu, Y., Li, Y., Kurths, J. (2021): Characterizing stochastic resonance in a triple cavity. - Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 379, 2198, 20200230.
https://doi.org/10.1098/rsta.2020.0230


Zitierlink: https://publications.pik-potsdam.de/pubman/item/item_25447
Zusammenfassung
Many biological systems possess confined structures,
which produce novel influences on the dynamics.
Here, stochastic resonance (SR) in a triple cavity
that consists of three units and is subjected to noise,
periodic force and vertical constance force is studied,
by calculating the spectral amplification η numerically.
Meanwhile, SR in the given triple cavity and
differences from other structures are explored. First,
it is found that the cavity parameters can eliminate or
regulate the maximum of η and the noise intensity that
induces this maximum. Second, compared to a double
cavity with similar maximum/minimum widths and
distances between two maximum widths as the triple
cavity, η in the triple one shows a larger maximum.
Next, the conversion of the natural boundary in the
pure potential to the reflection boundary in the triple
cavity will create the necessity of a vertical force to
induce SR and lead to a decrease in the maximum
of η. In addition, η monotonically decreases with the
increase of the vertical force and frequency of the
periodic force, while it presents several trends when
increasing the periodic force’s amplitude for different
noise intensities. Finally, our studies are extended to
the impact of fractional Gaussian noise excitations.
This article is part of the theme issue ‘Vibrational
and stochastic resonance in driven nonlinear systems
(part 2)’.