Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Event-Triggered Adaptive Containment Control for Heterogeneous Stochastic Nonlinear Multiagent Systems

Urheber*innen

Wang,  Xin
External Organizations;

Xu,  Rui
External Organizations;

Huang,  Tingwen
External Organizations;

/persons/resource/Juergen.Kurths

Kurths,  Jürgen
Potsdam Institute for Climate Impact Research;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PIKpublic verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Wang, X., Xu, R., Huang, T., Kurths, J. (2024): Event-Triggered Adaptive Containment Control for Heterogeneous Stochastic Nonlinear Multiagent Systems. - IEEE Transactions on Neural Networks and Learning Systems, 35, 6, 8524-8534.
https://doi.org/10.1109/TNNLS.2022.3230508


Zitierlink: https://publications.pik-potsdam.de/pubman/item/item_28316
Zusammenfassung
This article investigates the event-triggered adaptive containment control problem for a class of stochastic nonlinear multiagent systems with unmeasurable states. A stochastic system with unknown heterogeneous dynamics is established to describe the agents in a random vibration environment. Besides, the uncertain nonlinear dynamics are approximated by radial basis function neural networks (NNs), and the unmeasured states are estimated by constructing the NN-based observer. In addition, the switching-threshold-based event-triggered control method is adopted with the hope of reducing communication consumption and balancing system performance and network constraints. Moreover, we develop the novel distributed containment controller by utilizing the adaptive backstepping control strategy and the dynamic surface control (DSC) approach such that the output of each follower converges to the convex hull spanned by multiple leaders, and all signals of the closed-loop system are cooperatively semi-globally uniformly ultimately bounded in mean square. Finally, we verify the efficiency of the proposed controller by the simulation examples.