Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Adaptive resonance and control of chaos in a new memristive generalized FitzHugh-Nagumo bursting model

Urheber*innen

Tagne Nkounga,  I.B.
External Organizations;

/persons/resource/Marwan

Marwan,  Norbert
Potsdam Institute for Climate Impact Research;

Moukam Kakmeni,  F.M.
External Organizations;

Yamapi,  R.
External Organizations;

/persons/resource/Juergen.Kurths

Kurths,  Jürgen
Potsdam Institute for Climate Impact Research;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PIKpublic verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Tagne Nkounga, I., Marwan, N., Moukam Kakmeni, F., Yamapi, R., Kurths, J. (2023): Adaptive resonance and control of chaos in a new memristive generalized FitzHugh-Nagumo bursting model. - Chaos, 33, 10, 103106.
https://doi.org/10.1063/5.0166691


Zitierlink: https://publications.pik-potsdam.de/pubman/item/item_28870
Zusammenfassung
In a new memristive generalized FitzHugh–Nagumo bursting model, adaptive resonance (AR), in which the neuron system’s response to a varied stimulus can be improved by the ideal intensity of adaptation currents, is examined. We discovered that, in the absence of electromagnetic induction, there is signal detection at the greatest resonance peak of AR using the harmonic balance approach. For electromagnetic induction’s minor impacts, this peak of the AR is optimized, whereas for its larger effects, it disappears. We demonstrate dependency on adaption strength as a bifurcation parameter, the presence of period-doubling, and chaotic motion regulated and even annihilated by the increase in electromagnetic induction using bifurcation diagrams and Lyapunov exponents at specific resonance frequencies. The suggested system shows the propagation of localized excitations as chaotic or periodic modulated wave packets that resemble breathing structures. By using a quantitative recurrence-based analysis, it is possible to examine these plausible dynamics in the structures of the recurrence plot beyond the time series and phase portraits. Analytical and numerical analyses are qualitatively consistent.