Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Mapping the spatial heterogeneity of global land use and land cover from 2020 to 2100 at a 1 km

Urheber*innen

Zhang,  Tianyuan
External Organizations;

Cheng,  Changxiu
External Organizations;

/persons/resource/xudong.wu

Wu,  Xudong
Potsdam Institute for Climate Impact Research;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Zhang, T., Cheng, C., Wu, X. (2023): Mapping the spatial heterogeneity of global land use and land cover from 2020 to 2100 at a 1 km. - Scientific Data, 10, 748.
https://doi.org/10.1038/s41597-023-02637-7


Zitierlink: https://publications.pik-potsdam.de/pubman/item/item_28981
Zusammenfassung
A fine global future land use/land cover (LULC) is critical for demonstrating the geographic heterogeneity of earth system dynamics and human-earth interaction. In this study, we produced a 1 km global future LULC dataset that takes into account future climate and socio-economic changes as well as the impact of simulated results of the former year on temporally adjacent periods. By incorporating the variations in climatic and socio-economic factors, we differentiated LULC suitability probabilities for historical and future periods across representative SSP-RCP scenarios. Then, by using an improved cellular automata model-PLUS to simulate the patch-level changes of various land classes, we iteratively downscaled water-basin-level LULC demands in various future scenarios to a spatial resolution of 1 km. Our dataset achieves a high degree of simulation accuracy (Kappa = 0.94, OA = 0.97, FoM = 0.10) and precisely captures the spatial-temporal heterogeneity of global LULC changes under the combined effects of climate change and socio-economic development. This robust and fine-scale LULC dataset provides valuable spatially-explicit information essential for earth system modeling and intricate dynamics between anthropogenic activities and the environment.