日本語
 
Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Assessing the impact on crop modelling of multi- and uni-variate climate model bias adjustments

Authors

Galmarini,  S.
External Organizations;

Solazzo,  E.
External Organizations;

Ferrise,  R.
External Organizations;

Kumar Srivastava,  A.
External Organizations;

Ahmed,  M.
External Organizations;

Asseng,  S.
External Organizations;

Cannon,  A. J.
External Organizations;

Dentener,  F.
External Organizations;

De Sanctis,  G.
External Organizations;

Gaiser,  T.
External Organizations;

Gao,  Y.
External Organizations;

Gayler,  S.
External Organizations;

Gutierrez,  J. M.
External Organizations;

Hoogenboom,  G.
External Organizations;

Iturbide,  M.
External Organizations;

Jury,  M.
External Organizations;

/persons/resource/slange

Lange,  Stefan
Potsdam Institute for Climate Impact Research;

Loukos,  H.
External Organizations;

Maraun,  D.
External Organizations;

Moriondo,  M.
External Organizations;

McGinnis,  S.
External Organizations;

Nendel,  C.
External Organizations;

Padovan,  G.
External Organizations;

Riccio,  A.
External Organizations;

Ripoche,  D.
External Organizations;

Stockle,  C. O.
External Organizations;

Supit,  I.
External Organizations;

Thao,  S.
External Organizations;

Trombi,  G.
External Organizations;

Vrac,  M.
External Organizations;

Weber,  T. K. D.
External Organizations;

Zhao,  C.
External Organizations;

URL
There are no locators available
フルテキスト (公開)
There are no public fulltexts stored in PIKpublic
付随資料 (公開)
There is no public supplementary material available
引用

Galmarini, S., Solazzo, E., Ferrise, R., Kumar Srivastava, A., Ahmed, M., Asseng, S., Cannon, A. J., Dentener, F., De Sanctis, G., Gaiser, T., Gao, Y., Gayler, S., Gutierrez, J. M., Hoogenboom, G., Iturbide, M., Jury, M., Lange, S., Loukos, H., Maraun, D., Moriondo, M., McGinnis, S., Nendel, C., Padovan, G., Riccio, A., Ripoche, D., Stockle, C. O., Supit, I., Thao, S., Trombi, G., Vrac, M., Weber, T. K. D., & Zhao, C. (2024). Assessing the impact on crop modelling of multi- and uni-variate climate model bias adjustments. Agricultural Systems, 215:. doi:10.1016/j.agsy.2023.103846.


引用: https://publications.pik-potsdam.de/pubman/item/item_29542
要旨
Crop models are essential tools for assessing the impact of climate change on national or regional agricultural production. Starting from meteorology, soil and crop management, fertilization and irrigation practices, they predict the yield of specific crop varieties. For long term assessments, climate models are the source of primary information. To make climate model results usable in a specific time frame context, bias adjustment (BA) is required. In fact, climate models tend to deviate from day-to-day values of the physical parameters while conserving the climate variability signal. BA brings the climatic signal to the actual values observed in a specific location and period, and to be representative of a specific period in absolute terms. BA techniques come in different flavours. The broadest categorization is univariate and multivariate methods. Multivariate methods adjust the variables considering possible cross-correlations while univariate methods treat the variables one by one without accounting for possible dependence on one another.