English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Feedback mechanisms controlling Antarctic glacial-cycle dynamics simulated with a coupled ice sheet–solid Earth model

Authors
/persons/resource/Torsten.Albrecht

Albrecht,  Torsten
Potsdam Institute for Climate Impact Research;
Submitting Corresponding Author, Potsdam Institute for Climate Impact Research;

Bagge,  Meike
External Organizations;

Klemann,  Volker
External Organizations;

External Ressource
Fulltext (public)

30223oa.pdf
(Publisher version), 8MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Albrecht, T., Bagge, M., Klemann, V. (2024): Feedback mechanisms controlling Antarctic glacial-cycle dynamics simulated with a coupled ice sheet–solid Earth model. - The Cryosphere, 18, 9, 4233-4255.
https://doi.org/10.5194/tc-18-4233-2024


Cite as: https://publications.pik-potsdam.de/pubman/item/item_30223
Abstract
The dynamics of the ice sheets on glacial timescales are highly controlled by interactions with the solid Earth, i.e., the glacial isostatic adjustment (GIA). Particularly at marine ice sheets, competing feedback mechanisms govern the migration of the ice sheet's grounding line (GL) and hence the ice sheet stability. For this study, we developed a coupling scheme and performed a suite of coupled ice sheet–solid Earth simulations over the last two glacial cycles. To represent ice sheet dynamics we apply the Parallel Ice Sheet Model (PISM), and to represent the solid Earth response we apply the 3D VIscoelastic Lithosphere and MAntle model (VILMA), which, in addition to load deformation and rotation changes, considers the gravitationally consistent redistribution of water (the sea-level equation). We decided on an offline coupling between the two model components. By convergence of trajectories of the Antarctic Ice Sheet deglaciation we determine optimal coupling time step and spatial resolution of the GIA model and compare patterns of inferred relative sea-level change since the Last Glacial Maximum with the results from previous studies. With our coupling setup we evaluate the relevance of feedback mechanisms for the glaciation and deglaciation phases in Antarctica considering different 3D Earth structures resulting in a range of load-response timescales. For rather long timescales, in a glacial climate associated with the far-field sea-level low stand, we find GL advance up to the edge of the continental shelf mainly in West Antarctica, dominated by a self-amplifying GIA feedback, which we call the “forebulge feedback”. For the much shorter timescale of deglaciation, dominated by the marine ice sheet instability, our simulations suggest that the stabilizing sea-level feedback can significantly slow down GL retreat in the Ross sector, which is dominated by a very weak Earth structure (i.e., low mantle viscosity and thin lithosphere). This delaying effect prevents a Holocene GL retreat beyond its present-day position, which is discussed in the scientific community and supported by observational evidence at the Siple Coast and by previous model simulations. The applied coupled framework, PISM–VILMA, allows for defining restart states to run multiple sensitivity simulations from. It can be easily implemented in Earth system models (ESMs) and provides the tools to gain a better understanding of ice sheet stability on glacial timescales as well as in a warmer future climate.