Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Distributed Partial Quantum Consensus of Qubit Networks With Connected Topologies

Urheber*innen

Jin,  Xin
External Organizations;

Cao,  Zhu
External Organizations;

Tang,  Yang
External Organizations;

/persons/resource/Juergen.Kurths

Kurths,  Jürgen
Potsdam Institute for Climate Impact Research;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PIKpublic verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Jin, X., Cao, Z., Tang, Y., Kurths, J. (2024): Distributed Partial Quantum Consensus of Qubit Networks With Connected Topologies. - IEEE Transactions on Cybernetics, 54, 9, 4986-4997.
https://doi.org/10.1109/TCYB.2024.3358905


Zitierlink: https://publications.pik-potsdam.de/pubman/item/item_30772
Zusammenfassung
In this article, we consider the partial quantum consensus problem of a qubit network in a distributed view. The local quantum operation is designed based on the Hamiltonian by using the local information of each quantum system in a network of qubits. We construct the unitary transformation for each quantum system to achieve the partial quantum consensus, that is, the directions of the quantum states in the Bloch ball will reach an agreement. A simple case of two-qubit quantum systems is considered first, and a minimum completing time of reaching partial consensus is obtained based on the geometric configuration of each qubit. Furthermore, we extend the approaches to deal with the more general N -qubit networks. Two partial quantum consensus protocols, based on the Lyapunov method for chain graphs and the geometry method for connected graphs, are proposed. The geometry method can be utilized to deal with more general connected graphs, while for the Lyapunov method, the global consensus can be obtained. The numerical simulation over a qubit network is demonstrated to verify the validity and the effectiveness of the theoretical results.