Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Density-based recurrence measures from microstates

Urheber*innen
/persons/resource/Felipe.Eduardo

Lopes da Cruz,  Felipe Eduardo
Potsdam Institute for Climate Impact Research;

Prado,  Thiago de Lima
External Organizations;

Lopes,  Sergio Roberto
External Organizations;

/persons/resource/Marwan

Marwan,  Norbert       
Potsdam Institute for Climate Impact Research;

/persons/resource/Juergen.Kurths

Kurths,  Jürgen
Potsdam Institute for Climate Impact Research;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

cruz_2025_PhysRevE.111.044212.pdf
(Verlagsversion), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Lopes da Cruz, F. E., Prado, T. d. L., Lopes, S. R., Marwan, N., Kurths, J. (2025): Density-based recurrence measures from microstates. - Physical Review E, 111, 4, 044212.
https://doi.org/10.1103/PhysRevE.111.044212


Zitierlink: https://publications.pik-potsdam.de/pubman/item/item_32550
Zusammenfassung
Recurrence analysis is a powerful tool for nonlinear time series analysis deeply rooted in the theory of dynamical systems, finding applications across many areas of science. It works by mapping recurrences of a time series or phase space trajectory into a logical matrix. Recurrence quantification analyses (RQAs) are computed from its internal structures, such as recurrence density and the distribution of diagonal and vertical lines. Here, we link the density-based recurrence measures such as determinism and laminarity to the concept of microstates. We present a way to obtain the histogram of both diagonal and vertical lines from recurrence microstates, which are small square submatrices of the recurrence matrix. This approach opens up a line of research by reframing traditional RQAs in terms of microstates. Therefore, we establish a bridge between concepts of traditional lines-based RQA and recurrence microstates, and illustrate this for various paradigmatic systems.