日本語
 
Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

  Sectoral performance analysis of national greenhouse gas emission inventories by means of neural networks

Ganzenmüller, R., Pradhan, P., & Kropp, J. P. (2019). Sectoral performance analysis of national greenhouse gas emission inventories by means of neural networks. Science of the Total Environment, 656, 80-89. doi:10.1016/j.scitotenv.2018.11.311.

Item is

基本情報

表示: 非表示:
資料種別: 学術論文

ファイル

表示: ファイル
非表示: ファイル
:
8271oa.pdf (ポストプリント), 945KB
ファイル名:
8271oa.pdf
説明:
-
閲覧制限:
公開
MIMEタイプ / チェックサム:
application/pdf / [MD5]
技術的なメタデータ:
著作権日付:
-
著作権情報:
-
CCライセンス:
-

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Ganzenmüller, Raphael1, 著者              
Pradhan, Prajal1, 著者              
Kropp, Jürgen P.1, 著者              
所属:
1Potsdam Institute for Climate Impact Research, ou_persistent13              

内容説明

表示:
非表示:
キーワード: -
 要旨: Annual greenhouse gas emissions have increased more than threefold between 1950 and 2014, posing a major threat to the integrity of the entire earth system and subsequently to humankind. Consequently, roadmaps towards low-carbon pathways are urgently needed. Our study contributes to a more detailed understanding of the dynamics of country based emission patterns and uses them to discuss prospective low-carbon pathways for countries. As availability of databases on sectoral emissions substantially increased, we employ machine learning techniques to classify emission features and pathways. By doing so, 18 representative emission patterns are derived. Overall emissions from seven sectors and for 167 countries covering the time span from 1950 to 2014 have been used in the analyses. The following significant trends can be observed: a) increasing per capita emissions due to growing fossil fuel use in many parts of the world, b) a decline in per capita emissions in some countries, and c) a shift in the emission shares, i.e., a reduction of agricultural and land use contributions in certain regions. Using the emission patterns, their dynamics, and best performing countries as role models, we show the possibility for gaining a decent human development without significantly increasing per capita emissions.

資料詳細

表示:
非表示:
言語:
 日付: 2019
 出版の状態: Finally published
 ページ: -
 出版情報: -
 目次: -
 査読: 査読あり
 識別子(DOI, ISBNなど): DOI: 10.1016/j.scitotenv.2018.11.311
PIKDOMAIN: RD2 - Climate Resilience
eDoc: 8271
Research topic keyword: Mitigation
Research topic keyword: 1.5/2°C limit
Research topic keyword: Global Commons
Model / method: Machine Learning
Regional keyword: Global
Organisational keyword: RD2 - Climate Resilience
Working Group: Urban Transformations
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: Science of the Total Environment
種別: 学術雑誌, SCI, Scopus, p3
 著者・編者:
所属:
出版社, 出版地: -
ページ: - 巻号: 656 通巻号: - 開始・終了ページ: 80 - 89 識別子(ISBN, ISSN, DOIなど): CoNE: https://publications.pik-potsdam.de/cone/journals/resource/journals444