日本語
 
Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

  Regression-based distribution mapping for bias correction of climate model outputs using linear quantile regression

Passow, C., & Donner, R. V. (2020). Regression-based distribution mapping for bias correction of climate model outputs using linear quantile regression. Stochastic Environmental Research and Risk Assessment, 34(1), 87-102. doi:10.1007/s00477-019-01750-7.

Item is

基本情報

表示: 非表示:
資料種別: 学術論文

ファイル

表示: ファイル
非表示: ファイル
:
8804.pdf (出版社版), 3MB
 
ファイルのパーマリンク:
-
ファイル名:
8804.pdf
説明:
-
閲覧制限:
非公開
MIMEタイプ / チェックサム:
application/pdf
技術的なメタデータ:
著作権日付:
-
著作権情報:
-
CCライセンス:
-

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Passow, C.1, 著者
Donner, Reik V.2, 著者              
所属:
1External Organizations, ou_persistent22              
2Potsdam Institute for Climate Impact Research, ou_persistent13              

内容説明

表示:
非表示:
キーワード: -
 要旨: Impact models are a major source of information for quantifying the consequences of future climate change for humans and the environment. To provide plausible outputs, these models require unbiased high resolution meteorological data as input for atmospheric conditions. State of the art regional climate models (RCMs) often fail to provide such data, since they can exhibit large systematic biases. Therefore, bias correction methods (BCMs) have become a common tool in climate impact studies. Bias correction, however, comes with strong assumptions and limitations, often resulting from the fact that most BCMs are unable to appropriately calibrate a time dependent and conditional transfer function. To address this problem, we introduce here regression quantile mapping (RQM), a bias correction approach based on (linear) regression models which allow to design transfer functions based on expert knowledge. The new RQM algorithm is described in full detail in its basic (linear model) version and applied to RCM generated precipitation data for entire Europe. Based on the latter example, we provide a thorough comparison with another established BCM, quantile delta mapping (QDM) regarding the seasonal characteristics of precipitation sums. Our results demonstrate that RQM already achieves good results when a simple linear model is used. The relationship between precipitation and temperature was properly evaluated by RQM and representation of seasonal variations and key characteristics of precipitation were improved for most seasons. Systematic biases where reduced significantly during this process. Particular improvements in comparison with QDM are found regarding the shape and width of the distribution of bias corrected model precipitation. Furthermore, the representation of precipitation extremes within the data was largely improved when RQM was used instead of QDM.

資料詳細

表示:
非表示:
言語:
 日付: 2020
 出版の状態: Finally published
 ページ: -
 出版情報: -
 目次: -
 査読: 査読あり
 識別子(DOI, ISBNなど): DOI: 10.1007/s00477-019-01750-7
PIKDOMAIN: RD4 - Complexity Science
eDoc: 8804
MDB-ID: Entry suspended
Working Group: Development of advanced time series analysis techniques
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: Stochastic Environmental Research and Risk Assessment
種別: 学術雑誌, SCI, Scopus, p3
 著者・編者:
所属:
出版社, 出版地: -
ページ: - 巻号: 34 (1) 通巻号: - 開始・終了ページ: 87 - 102 識別子(ISBN, ISSN, DOIなど): CoNE: https://publications.pik-potsdam.de/cone/journals/resource/1708281
Publisher: Springer