Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Key propagation pathways of extreme precipitation events revealed by climate networks

Li, K., Huang, Y., Liu, K., Wang, M., Cai, F., Zhang, J., Boers, N. (2024): Key propagation pathways of extreme precipitation events revealed by climate networks. - npj Climate and Atmospheric Science, 7, 165.
https://doi.org/10.1038/s41612-024-00701-6

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
30010oa.pdf (Verlagsversion), 4MB
Name:
30010oa.pdf
Beschreibung:
-
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Li, Kaiwen1, Autor              
Huang, Yu1, Autor              
Liu, Kai2, Autor
Wang, Ming2, Autor
Cai, Fenying1, Autor              
Zhang, Jianxin1, Autor              
Boers, Niklas1, Autor              
Affiliations:
1Potsdam Institute for Climate Impact Research, ou_persistent13              
2External Organizations, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: The comprehensive understanding of propagation patterns of extreme precipitation events (EPEs) is essential for early warning of associated hazards such as floods and landslides. In this study, we utilize climate networks based on an event synchronization measure to investigate the propagation patterns of EPEs over the global land masses, and identify 16 major propagation pathways. We explain them in association with regional weather systems, topographic effects, and travelling Rossby wave patterns. We also demonstrate that the revealed propagation pathways carry substantial EPE predictability in certain areas, such as in the Appalachian, the Andes mountains. Our results help to improve the understanding of key propagation patterns of EPEs, where the global diversity of the propagated patterns of EPEs and corresponding potential predictability provide prior knowledge for predicting EPEs, and demonstrate the power of climate network approaches to study the spatiotemporal connectivity of extreme events in the climate system.

Details

einblenden:
ausblenden:
Sprache(n): eng - Englisch
 Datum: 2024-06-172024-07-122024-07-12
 Publikationsstatus: Final veröffentlicht
 Seiten: 8
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1038/s41612-024-00701-6
PIKDOMAIN: RD4 - Complexity Science
Organisational keyword: RD4 - Complexity Science
Organisational keyword: FutureLab - Artificial Intelligence in the Anthropocene
Research topic keyword: Nonlinear Dynamics
Model / method: Machine Learning
MDB-ID: pending
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: npj Climate and Atmospheric Science
Genre der Quelle: Zeitschrift, SCI, Scopus, oa
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 7 Artikelnummer: 165 Start- / Endseite: - Identifikator: CoNE: https://publications.pik-potsdam.de/cone/journals/resource/npj-climate-atmospheric-science
Publisher: Nature