Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Event coincidence analysis for quantifying statistical interrelationships between event time series

Donges, J. F., Schleussner, C.-F., Siegmund, J. F., Donner, R. V. (2016): Event coincidence analysis for quantifying statistical interrelationships between event time series. - European Physical Journal - Special Topics, 225, 3, 471-487.
https://doi.org/10.1140/epjst/e2015-50233-y

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
7178.pdf (Verlagsversion), 726KB
 
Datei-Permalink:
-
Name:
7178.pdf
Beschreibung:
-
Sichtbarkeit:
Privat
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Donges, Jonathan Friedemann1, Autor              
Schleussner, Carl-Friedrich1, Autor              
Siegmund, Jonatan F.1, Autor              
Donner, Reik V.1, Autor              
Affiliations:
1Potsdam Institute for Climate Impact Research, ou_persistent13              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Studying event time series is a powerful approach for analyzing the dynamics of complex dynamical systems in many fields of science. In this paper, we describe the method of event coincidence analysis to provide a framework for quantifying the strength, directionality and time lag of statistical interrelationships between event series. Event coincidence analysis allows to formulate and test null hypotheses on the origin of the observed interrelationships including tests based on Poisson processes or, more generally, stochastic point processes with a prescribed inter-event time distribution and other higher-order properties. Applying the framework to country-level observational data yields evidence that flood events have acted as triggers of epidemic outbreaks globally since the 1950s. Facing projected future changes in the statistics of climatic extreme events, statistical techniques such as event coincidence analysis will be relevant for investigating the impacts of anthropogenic climate change on human societies and ecosystems worldwide.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2016
 Publikationsstatus: Final veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1140/epjst/e2015-50233-y
PIKDOMAIN: Earth System Analysis - Research Domain I
PIKDOMAIN: Transdisciplinary Concepts & Methods - Research Domain IV
eDoc: 7178
Research topic keyword: Climate impacts
Research topic keyword: Extremes
Research topic keyword: Health
Research topic keyword: Nonlinear Dynamics
Model / method: Nonlinear Data Analysis
Model / method: Open Source Software
Regional keyword: Global
Organisational keyword: FutureLab - Earth Resilience in the Anthropocene
Organisational keyword: RD1 - Earth System Analysis
Organisational keyword: RD4 - Complexity Science
Working Group: Whole Earth System Analysis
Working Group: Development of advanced time series analysis techniques
Working Group: Network- and machine-learning-based prediction of extreme events
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: European Physical Journal - Special Topics
Genre der Quelle: Zeitschrift, SCI, Scopus, p3
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 225 (3) Artikelnummer: - Start- / Endseite: 471 - 487 Identifikator: CoNE: https://publications.pik-potsdam.de/cone/journals/resource/150617