hide
Free keywords:
-
Abstract:
A nuclear war using less than 1% of the current global nuclear arsenal, which would inject 5 Tg of soot into the stratosphere, could produce climate change unprecedented in recorded human history and significant impacts on agricultural productivity and the economy. These effects would be most severe for the first five years after the nuclear war and may last for more than a decade. This paper calculates how food availability would change by employing the Environmental Impact and Sustainability Applied General Equilibrium model. Under a robust world trading system, global food availability would drop by a few percentage points. If the war would destabilize trade, it would magnify by several times the negative ramifications of land productivity shocks on food availability. If exporting countries redirect production to domestic consumption at the expense of importing countries, it would lead to the destabilization of international trade. The analysis suggests that economic models aiming to inform policymakers require both economic behavior analysis and biophysical drivers. Policy lessons derived from a crop model can be significantly nuanced when coupled with economic feedback derived from economic models. Through the impact on yield, farmers could shift production among crops and reallocate land use to maximize profits, showing the importance of general equilibrium effects such as product and input substitution and international trade. Although the global impact on corn and soybean production would be significant when just considering crop production, it could be considerably smaller under the economic model. However, this would be at the expense of other sectors, including livestock. In addition, the costs borne from disruptions to climate would vary significantly across regions, with significant adverse effects in high latitude regions. The severity of the shocks in the high-latitude areas would marginalize the farmers' product and input substitution ability.