日本語
 
Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

  Enhancing streamflow forecasting for the Brazilian electricity sector: a strategy based on a hyper-multimodel

Souza Filho, F. A., Rocha, R. V., Estacio, A. B. S., Rolim, L. R. Z., Pontes Filho, J. D. A., Porto, V. C., & Guimarães, S. O. (2023). Enhancing streamflow forecasting for the Brazilian electricity sector: a strategy based on a hyper-multimodel. Revista Brasileira de Recursos Hídricos, 28:. doi:10.1590/2318-0331.282320230120.

Item is

基本情報

表示: 非表示:
資料種別: 学術論文

ファイル

表示: ファイル
非表示: ファイル
:
28920oa.pdf (出版社版), 3MB
ファイル名:
28920oa.pdf
説明:
-
閲覧制限:
公開
MIMEタイプ / チェックサム:
application/pdf / [MD5]
技術的なメタデータ:
著作権日付:
-
著作権情報:
-

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Souza Filho, F. A.1, 著者
Rocha, R. V.1, 著者
Estacio, A. B. S.1, 著者
Rolim, L. R. Z.1, 著者
Pontes Filho, J. D. A.1, 著者
Porto, V. C.1, 著者
Guimarães, Sullyandro Oliveira2, 著者              
所属:
1External Organizations, ou_persistent22              
2Potsdam Institute for Climate Impact Research, Potsdam, ou_persistent13              

内容説明

表示:
非表示:
キーワード: -
 要旨: Streamflow forecasting plays an important role in ensuring the reliable supply of electricity in countries heavily reliant on hydropower. This paper proposes a novel framework that integrates various hydrological models, climate models, and observational data to develop a comprehensive forecasting system. Three families of models were employed: seasonal forecasting climate models integrated with hydrological rainfall-runoff models; stochastic or machine learning models utilizing endogenous variables, and stochastic or machine learning models that consider exogenous variables. The hyper-multimodel framework could successfully increase the overall performance of the scenarios generated through the use of the individual models. The quality of the final scenarios generated was directly connected to the performance of the individual models. Therefore, the proposed framework has potential to improve hydrological forecast for the Brazilian electricity sector with the use of more refined and calibrated individual models.

資料詳細

表示:
非表示:
言語: eng - 英語
 日付: 2023-10-062023-10-142023-12-012023-12-01
 出版の状態: Finally published
 ページ: 14
 出版情報: -
 目次: -
 査読: 査読あり
 識別子(DOI, ISBNなど): PIKDOMAIN: RD1 - Earth System Analysis
Organisational keyword: RD1 - Earth System Analysis
MDB-ID: No data to archive
DOI: 10.1590/2318-0331.282320230120
Working Group: Earth System Modes of Operation
Research topic keyword: Freshwater
Research topic keyword: Energy
Research topic keyword: Complex Networks
Regional keyword: South America
Model / method: Model Intercomparison
OATYPE: Gold Open Access
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: Revista Brasileira de Recursos Hídricos
種別: 学術雑誌, Scopus, oa
 著者・編者:
所属:
出版社, 出版地: -
ページ: - 巻号: 28 通巻号: e45 開始・終了ページ: - 識別子(ISBN, ISSN, DOIなど): CoNE: https://publications.pik-potsdam.de/cone/journals/resource/2318-0331
Publisher: Associação Brasileira de Recursos Hídricos