日本語
 
Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Enhancing streamflow forecasting for the Brazilian electricity sector: a strategy based on a hyper-multimodel

Authors

Souza Filho,  F. A.
External Organizations;

Rocha,  R. V.
External Organizations;

Estacio,  A. B. S.
External Organizations;

Rolim,  L. R. Z.
External Organizations;

Pontes Filho,  J. D. A.
External Organizations;

Porto,  V. C.
External Organizations;

/persons/resource/oliveiraguimaraes

Guimarães,  Sullyandro Oliveira
Potsdam Institute for Climate Impact Research;

URL
There are no locators available
フルテキスト (公開)

28920oa.pdf
(出版社版), 3MB

付随資料 (公開)
There is no public supplementary material available
引用

Souza Filho, F. A., Rocha, R. V., Estacio, A. B. S., Rolim, L. R. Z., Pontes Filho, J. D. A., Porto, V. C., & Guimarães, S. O. (2023). Enhancing streamflow forecasting for the Brazilian electricity sector: a strategy based on a hyper-multimodel. Revista Brasileira de Recursos Hídricos, 28:. doi:10.1590/2318-0331.282320230120.


引用: https://publications.pik-potsdam.de/pubman/item/item_28920
要旨
Streamflow forecasting plays an important role in ensuring the reliable supply of electricity in countries heavily reliant on hydropower. This paper proposes a novel framework that integrates various hydrological models, climate models, and observational data to develop a comprehensive forecasting system. Three families of models were employed: seasonal forecasting climate models integrated with hydrological rainfall-runoff models; stochastic or machine learning models utilizing endogenous variables, and stochastic or machine learning models that consider exogenous variables. The hyper-multimodel framework could successfully increase the overall performance of the scenarios generated through the use of the individual models. The quality of the final scenarios generated was directly connected to the performance of the individual models. Therefore, the proposed framework has potential to improve hydrological forecast for the Brazilian electricity sector with the use of more refined and calibrated individual models.