Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  An efficient representation of glacier dynamics in a semi-distributed hydrological model to bridge glacier and river catchment scales

Wortmann, M., Bolch, T., Su, B., Krysanova, V. (2019): An efficient representation of glacier dynamics in a semi-distributed hydrological model to bridge glacier and river catchment scales. - Journal of Hydrology, 573, 136-152.
https://doi.org/10.1016/j.jhydrol.2019.03.006

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
8504.pdf (Verlagsversion), 4MB
 
Datei-Permalink:
-
Name:
8504.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Privat
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Wortmann, Michel1, Autor           
Bolch, T.2, Autor
Su, B.2, Autor
Krysanova, Valentina1, Autor           
Affiliations:
1Potsdam Institute for Climate Impact Research, ou_persistent13              
2External Organizations, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Glacierised river catchments have been shown to be highly sensitive to climate change, while large populations
depend on the water resources originating from them. Hydrological models are used to aid water resource
management, yet their treatment of glacier processes is either rudimentary in large-scale applications or linked
to fully distributed glacier models that prevent larger model domains. Also, data scarcity in mountainous
catchments has hampered the implementation of physically based approaches over entire river catchments. A
fully integrated glacier dynamics module was developed for the hydrological model SWIM (SWIM-G) that takes
full account of the spatial heterogeneity of mountainous catchments but keeps in line with the semi-distributed
disaggregation of the hydrological model. The glacierised part of the catchment is disaggregated into glaciological response units that are based on subbasin, elevation zone and aspect classes. They seamlessly integrate
into the hydrological response units of the hydrological model. Robust and simple approaches to ice flow,
avalanching, snow accumulation and metamorphism as well as glacier ablation under consideration of aspect,
debris cover and sublimation are implemented in the model, balancing process complexity and data availability.
The fully integrated model is also capable of simulating a range of other hydrological processes that are common
for larger mountainous catchments such as reservoirs, irrigation agriculture and runoff from a diverse soil and
vegetation cover. SWIM-G is initialised and calibrated to initial glacier hypsometry, glacier mass balance and
river discharge. While the model is intended to be used in medium to large river basins with data-scarce and
glacierised headwaters, it is here validated in the data-scarce catchment of the Upper Aksu River, Kyrgyzstan/
NW China and in the relatively data-abundant catchment of the Upper Rhone River, Switzerland.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2019
 Publikationsstatus: Final veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1016/j.jhydrol.2019.03.006
PIKDOMAIN: RD2 - Climate Resilience
eDoc: 8504
Research topic keyword: Freshwater
Research topic keyword: Ice
Model / method: SWIM
Regional keyword: Asia
Organisational keyword: RD2 - Climate Resilience
Working Group: Hydroclimatic Risks
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Journal of Hydrology
Genre der Quelle: Zeitschrift, SCI, Scopus, p3
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 573 Artikelnummer: - Start- / Endseite: 136 - 152 Identifikator: CoNE: https://publications.pik-potsdam.de/cone/journals/resource/journals276