Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Machine discovery of partial differential equations from spatiotemporal data: A sparse Bayesian learning framework

Yuan, Y., Li, X., Li, L., Liang, F., Tang, X., Zhang, F., Goncalves, J., Voss, H., Ding, H., Kurths, J. (2023): Machine discovery of partial differential equations from spatiotemporal data: A sparse Bayesian learning framework. - Chaos, 33, 11, 113122.
https://doi.org/10.1063/5.0160900

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
29325oa.pdf (Verlagsversion), 8MB
 
Datei-Permalink:
-
Name:
29325oa.pdf
Beschreibung:
-
Sichtbarkeit:
Privat (Embargo bis 2024-11-20)
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Yuan, Ye1, Autor
Li, Xiuting1, Autor
Li, Liang1, Autor
Liang, Frank1, Autor
Tang, Xiuchuan1, Autor
Zhang, Fumin1, Autor
Goncalves, Jorge1, Autor
Voss, Henning1, Autor
Ding, Han1, Autor
Kurths, Jürgen2, Autor              
Affiliations:
1External Organizations, ou_persistent22              
2Potsdam Institute for Climate Impact Research, ou_persistent13              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: This study presents a general framework, namely, Sparse Spatiotemporal System Discovery (S3d⁠), for discovering dynamical models given by Partial Differential Equations (PDEs) from spatiotemporal data. S3d is built on the recent development of sparse Bayesian learning, which enforces sparsity in the estimated PDEs. This approach enables a balance between model complexity and fitting error with theoretical guarantees. The proposed framework integrates Bayesian inference and a sparse priori distribution with the sparse regression method. It also introduces a principled iterative re-weighted algorithm to select dominant features in PDEs and solve for the sparse coefficients. We have demonstrated the discovery of the complex Ginzburg–Landau equation from a traveling-wave convection experiment, as well as several other PDEs, including the important cases of Navier–Stokes and sine-Gordon equations, from simulated data.

Details

einblenden:
ausblenden:
Sprache(n): eng - Englisch
 Datum: 2023-11-152023-11-15
 Publikationsstatus: Final veröffentlicht
 Seiten: 16
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1063/5.0160900
MDB-ID: No data to archive
PIKDOMAIN: RD4 - Complexity Science
Organisational keyword: RD4 - Complexity Science
Research topic keyword: Nonlinear Dynamics
Model / method: Machine Learning
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Chaos
Genre der Quelle: Zeitschrift, SCI, Scopus, p3
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 33 (11) Artikelnummer: 113122 Start- / Endseite: - Identifikator: CoNE: https://publications.pik-potsdam.de/cone/journals/resource/180808
Publisher: American Institute of Physics (AIP)