English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  PyBanshee version (1.0): A Python implementation of the MATLAB toolbox BANSHEE for Non-Parametric Bayesian Networks with updated features

Koot, P., Mendoza-Lugo, M. A., Paprotny, D., Morales-Nápoles, O., Ragno, E., Worm, D. T. (2023): PyBanshee version (1.0): A Python implementation of the MATLAB toolbox BANSHEE for Non-Parametric Bayesian Networks with updated features. - SoftwareX, 21, 101279.
https://doi.org/10.1016/j.softx.2022.101279

Item is

Files

show Files
hide Files
:
27674oa.pdf (Publisher version), 474KB
Name:
27674oa.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show

Creators

show
hide
 Creators:
Koot, Paul1, Author
Mendoza-Lugo, Miguel Angel1, Author
Paprotny, Dominik2, Author              
Morales-Nápoles, Oswaldo1, Author
Ragno, Elisa1, Author
Worm, Daniël T.H.1, Author
Affiliations:
1External Organizations, ou_persistent22              
2Potsdam Institute for Climate Impact Research, ou_persistent13              

Content

show
hide
Free keywords: -
 Abstract: In this paper we discuss PyBanshee, which is a Python-based open-source implementation of the MATLAB toolbox BANSHEE. PyBanshee constitutes the first fully open-source package to quantify, visualize and validate Non-Parametric Bayesian Networks (NPBNs). The architecture of PyBanshee is heavily based on its MATLAB predecessor. It presents the full implementation of existing tools and introduces new modules. Specifically, PyBanshee allows for: (i) choosing fully parametric one-dimensional margins, (ii) choosing different sample sizes for the model-validation tests based on the Hellinger distance, (iii) drawing user-defined sample sizes of the NPBN, (iv) sample-based conditioning sampling (similarly to the closed-source proprietary package UNINET by LightTwist Software) and (v) visualizing the comparison between the histograms of the unconditional and conditional marginal distributions. New detailed examples demonstrating new features are provided.

Details

show
hide
Language(s): eng - English
 Dates: 2021-10-192022-11-212022-12-082023-02
 Publication Status: Finally published
 Pages: 5
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1016/j.softx.2022.101279
Organisational keyword: RD3 - Transformation Pathways
PIKDOMAIN: RD3 - Transformation Pathways
Working Group: Data-Centric Modeling of Cross-Sectoral Impacts
MDB-ID: No data to archive
Research topic keyword: Extremes
Research topic keyword: Complex Networks
Model / method: Quantitative Methods
OATYPE: Gold Open Access
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: SoftwareX
Source Genre: Journal, SCI, Scopus, oa
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 21 Sequence Number: 101279 Start / End Page: - Identifier: CoNE: https://publications.pik-potsdam.de/cone/journals/resource/softwarex
Publisher: Elsevier