日本語
 
Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

  Robust distributed estimation based on a generalized correntropy logarithmic difference algorithm over wireless sensor networks

Li, X., Feng, M., Chen, F., Shi, Q., & Kurths, J. (2020). Robust distributed estimation based on a generalized correntropy logarithmic difference algorithm over wireless sensor networks. Signal Processing, 177:. doi:10.1016/j.sigpro.2020.107731.

Item is

基本情報

表示: 非表示:
資料種別: 学術論文

ファイル

表示: ファイル

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Li, Xinyu1, 著者
Feng, Mingyu1, 著者
Chen, Feng1, 著者
Shi, Qing1, 著者
Kurths, Jürgen2, 著者              
所属:
1External Organizations, ou_persistent22              
2Potsdam Institute for Climate Impact Research, ou_persistent13              

内容説明

表示:
非表示:
キーワード: -
 要旨: Distributed adaptive learning algorithms have played a critical role in signal processing and parameter estimation over networks. Most existing algorithms are based on the mean-square error (MSE) criterion, and they can achieve desirable performance when the noise is modeled as Gaussian. However, the performance of MSE-based algorithms may degrade dramatically with the impulsive noise. Therefore, the aim of this paper is to present a diffusion algorithm, named generalized correntropy-based logarithmic difference (d-GCLD) algorithm, for distributed estimation that incorporates robustness to wireless sensor networks (WSNs). By combining the logarithm operation and the correntropy criterion as the loss function, the proposed algorithm is robust to impulsive noise and achieves satisfactory performance in various situations. In addition, the stability problem is studied theoretically. Experimental results are given to demonstrate the validity of the new algorithm in different scenarios.

資料詳細

表示:
非表示:
言語:
 日付: 2020-08-012020
 出版の状態: Finally published
 ページ: -
 出版情報: -
 目次: -
 査読: 査読あり
 識別子(DOI, ISBNなど): DOI: 10.1016/j.sigpro.2020.107731
MDB-ID: No data to archive
PIKDOMAIN: RD4 - Complexity Science
Research topic keyword: Nonlinear Dynamics
Model / method: Nonlinear Data Analysis
Model / method: Machine Learning
Organisational keyword: RD4 - Complexity Science
Working Group: Network- and machine-learning-based prediction of extreme events
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: Signal Processing
種別: 学術雑誌, SCI, Scopus
 著者・編者:
所属:
出版社, 出版地: -
ページ: - 巻号: 177 通巻号: 107731 開始・終了ページ: - 識別子(ISBN, ISSN, DOIなど): その他: Elsevier
その他: 1872-7557
ISSN: 0165-1684
CoNE: https://publications.pik-potsdam.de/cone/journals/resource/signal-processing
Publisher: Elsevier