日本語
 
Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

  Enhanced multiresolution wavelet analysis of complex dynamics in nonlinear systems

Pavlov, A. N., Pavlova, O. N., Semyachkina-Glushkovskaya, O. V., & Kurths, J. (2021). Enhanced multiresolution wavelet analysis of complex dynamics in nonlinear systems. Chaos, 31(4):. doi:10.1063/5.0045859.

Item is

基本情報

表示: 非表示:
資料種別: 学術論文

ファイル

表示: ファイル
非表示: ファイル
:
Pavlov_2021_5.0045859.pdf (出版社版), 2MB
 
ファイルのパーマリンク:
-
ファイル名:
Pavlov_2021_5.0045859.pdf
説明:
-
閲覧制限:
非公開
MIMEタイプ / チェックサム:
application/pdf
技術的なメタデータ:
著作権日付:
-
著作権情報:
-
CCライセンス:
-

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Pavlov, A. N.1, 著者
Pavlova, O. N.1, 著者
Semyachkina-Glushkovskaya, O. V.1, 著者
Kurths, Jürgen2, 著者              
所属:
1External Organizations, ou_persistent22              
2Potsdam Institute for Climate Impact Research, ou_persistent13              

内容説明

表示:
非表示:
キーワード: -
 要旨: Multiresolution wavelet analysis (MWA) is a powerful data processing tool that provides a characterization of complex signals over multiple time scales. Typically, the standard deviations of wavelet coefficients are computed depending on the resolution level and such quantities are used as measures for diagnosing different types of system behavior. To enhance the capabilities of this tool, we propose a combination of MWA with detrended fluctuation analysis (DFA) of detail wavelet coefficients. We find that such an MWA&DFA approach is capable of revealing the correlation features of wavelet coefficients in independent ranges of scales, which provide more information about the complex organization of datasets compared to variances or similar statistical measures of the standard MWA. Using this approach, we consider changes in the dynamics of coupled chaotic systems caused by transitions between different types of complex oscillations. We also demonstrate the potential of the MWA&DFA method for characterizing different physiological conditions by analyzing the electrical brain activity in mice. Complex signals with multiple time scales are often analyzed by decomposing them into simpler components that can be easily characterized with clear numerical quantities. Fourier transform and Hilbert transform are classic examples of decompositions aimed at introducing simpler characteristics: the magnitudes of harmonic components, instantaneous amplitudes, or frequencies. In the case of time-varying dynamics with localized features of the datasets, an expansion in terms of wavelet functions is often provided, which can be very different and efficient under the fulfillment of some general constraints. The statistics of the multiresolution wavelet analysis (MWA) decomposition coefficients enable detecting short-term changes in system behavior and can be applied for diagnostics in many areas of science and technology. Unlike the generally used analysis of the standard deviation of detail wavelet coefficients vs resolution level, we propose an enhanced MWA dealing with the correlation analysis of these coefficients in order to identify information about their relationship. We show that such an analysis offers wider opportunities for studying complex systems and demonstrates several examples of its application, including chaotic oscillations in mathematical models of interacting systems and electroencephalograms (EEGs)

資料詳細

表示:
非表示:
言語:
 日付: 2021-04-07
 出版の状態: Finally published
 ページ: -
 出版情報: -
 目次: -
 査読: 査読あり
 識別子(DOI, ISBNなど): DOI: 10.1063/5.0045859
MDB-ID: No data to archive
PIKDOMAIN: RD4 - Complexity Science
Organisational keyword: RD4 - Complexity Science
Research topic keyword: Health
Research topic keyword: Nonlinear Dynamics
Model / method: Machine Learning
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: Chaos
種別: 学術雑誌, SCI, Scopus, p3
 著者・編者:
所属:
出版社, 出版地: -
ページ: - 巻号: 31 (4) 通巻号: 043110 開始・終了ページ: - 識別子(ISBN, ISSN, DOIなど): CoNE: https://publications.pik-potsdam.de/cone/journals/resource/180808
Publisher: American Institute of Physics (AIP)