日本語
 
Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

  Unsupervised community detection in attributed networks based on mutual information maximization

Zhu, J., Li, X., Gao, C., Wang, Z., & Kurths, J. (2021). Unsupervised community detection in attributed networks based on mutual information maximization. New Journal of Physics, 23:. doi:10.1088/1367-2630/ac2fbd.

Item is

基本情報

表示: 非表示:
資料種別: 学術論文

ファイル

表示: ファイル
非表示: ファイル
:
Zhu_2021_New_J._Phys._23_113016.pdf (出版社版), 2MB
ファイル名:
Zhu_2021_New_J._Phys._23_113016.pdf
説明:
-
閲覧制限:
公開
MIMEタイプ / チェックサム:
application/pdf / [MD5]
技術的なメタデータ:
著作権日付:
-
著作権情報:
-

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Zhu, Junyou1, 著者
Li, Xianghua1, 著者
Gao, Chao1, 著者
Wang, Zhen1, 著者
Kurths, Jürgen2, 著者              
所属:
1External Organizations, ou_persistent22              
2Potsdam Institute for Climate Impact Research, ou_persistent13              

内容説明

表示:
非表示:
キーワード: -
 要旨: Community detection is of great significance for understanding network functions and behaviors. With the successful application of deep learning in network-based analyses, recent studies have turned to utilizing graph convolutional networks (GCNs) to this problem due to their capability in capturing network attributes. Nevertheless, most existing GCN-based community detection approaches are semi-supervised and local structure-aware, even though community detection is an unsupervised learning problem essentially. In this paper, we develop a novel GCN method for unsupervised community detection under the framework of mutual information (MI) maximization, called UCDMI. Specifically, a novel MI maximization mechanism is developed to capture more fine-grained information of the global network structure in an unsupervised manner. Moreover, a new aggregation function is proposed for GCN to distinguish the importance between different neighboring nodes, which enables our method to identify more high-quality node representations and improve the community detection performance. Our extensive experiments demonstrate the effectiveness of our proposed UCDMI compared with several state-of-the-art community detection methods.

資料詳細

表示:
非表示:
言語:
 日付: 2021-11-092021-11-09
 出版の状態: Finally published
 ページ: -
 出版情報: -
 目次: -
 査読: 査読あり
 識別子(DOI, ISBNなど): DOI: 10.1088/1367-2630/ac2fbd
PIKDOMAIN: RD4 - Complexity Science
Organisational keyword: RD4 - Complexity Science
MDB-ID: No data to archive
OATYPE: Gold Open Access
Research topic keyword: Complex Networks
Research topic keyword: Nonlinear Dynamics
Model / method: Nonlinear Data Analysis
Model / method: Machine Learning
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: New Journal of Physics
種別: 学術雑誌, SCI, Scopus, p3, oa
 著者・編者:
所属:
出版社, 出版地: -
ページ: - 巻号: 23 通巻号: 113016 開始・終了ページ: - 識別子(ISBN, ISSN, DOIなど): CoNE: https://publications.pik-potsdam.de/cone/journals/resource/1911272
Publisher: IOP Publishing