Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Predicting basin stability of power grids using graph neural networks

Nauck, C., Lindner, M., Schürholt, K., Zhang, H., Schultz, P., Kurths, J., Isenhardt, I., Hellmann, F. (2022): Predicting basin stability of power grids using graph neural networks. - New Journal of Physics, 24, 043041.
https://doi.org/10.1088/1367-2630/ac54c9

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
26864oa.pdf (Verlagsversion), 4MB
Name:
26864oa.pdf
Beschreibung:
-
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
https://zenodo.org/record/5148085 (Ergänzendes Material)
Beschreibung:
-

Urheber

einblenden:
ausblenden:
 Urheber:
Nauck, Christian1, Autor              
Lindner, Michael1, Autor              
Schürholt, Konstantin2, Autor
Zhang, Haoming2, Autor
Schultz, Paul1, Autor              
Kurths, Jürgen1, Autor              
Isenhardt, Ingrid2, Autor
Hellmann, Frank1, Autor              
Affiliations:
1Potsdam Institute for Climate Impact Research, Potsdam, ou_persistent13              
2External Organizations, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Complex Systems, Nonlinear Dynamics, Dynamic Stability, Basin Stability, Power Grids, Machine Learning, Graph Neural Networks
 Zusammenfassung: The prediction of dynamical stability of power grids becomes more important and challenging with increasing shares of renewable energy sources due to their decentralized structure, reduced inertia and volatility. We investigate the feasibility of applying graph neural networks (GNN) to predict dynamic stability of synchronisation in complex power grids using the single-node basin stability (SNBS) as a measure. To do so, we generate two synthetic datasets for grids with 20 and 100 nodes respectively and estimate SNBS using Monte-Carlo sampling. Those datasets are used to train and evaluate the performance of eight different GNN-models. All models use the full graph without simplifications as input and predict SNBS in a nodal-regression-setup. We show that SNBS can be predicted in general and the performance significantly changes using different GNN-models. Furthermore, we observe interesting transfer capabilities of our approach: GNN-models trained on smaller grids can directly be applied on larger grids without the need of retraining.

Details

einblenden:
ausblenden:
Sprache(n): eng - Englisch
 Datum: 2021-12-162022-02-162022-02-162022-04
 Publikationsstatus: Final veröffentlicht
 Seiten: 17
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1088/1367-2630/ac54c9
PIKDOMAIN: RD4 - Complexity Science
Organisational keyword: RD4 - Complexity Science
Research topic keyword: Complex Networks
Research topic keyword: Energy
Research topic keyword: Nonlinear Dynamics
Model / method: Machine Learning
MDB-ID: No MDB - stored outside PIK (see DOI)
OATYPE: Gold Open Access
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden: ausblenden:
Projektname : -
Grant ID : -
Förderprogramm : Open-Access-Publikationskosten (491075472)
Förderorganisation : Deutsche Forschungsgemeinschaft (DFG)

Quelle 1

einblenden:
ausblenden:
Titel: New Journal of Physics
Genre der Quelle: Zeitschrift, SCI, Scopus, p3, oa
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 24 Artikelnummer: 043041 Start- / Endseite: - Identifikator: CoNE: https://publications.pik-potsdam.de/cone/journals/resource/1911272
Publisher: IOP Publishing