Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  ECOD: Unsupervised Outlier Detection Using Empirical Cumulative Distribution Functions

Li, Z., Zhao, Y., Hu, X., Botta, N., Ionescu, C., Chen, G. H. (2023): ECOD: Unsupervised Outlier Detection Using Empirical Cumulative Distribution Functions. - IEEE Transactions on Knowledge and Data Engineering, 35, 12, 12181-12193.
https://doi.org/10.1109/TKDE.2022.3159580

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
Li, Botta et al. ECOD Unsupervised Outlier Detection Using Empirical Cumulative Distribution Functions.pdf (beliebiger Volltext), 4MB
 
Datei-Permalink:
-
Name:
Li, Botta et al. ECOD Unsupervised Outlier Detection Using Empirical Cumulative Distribution Functions.pdf
Beschreibung:
-
Sichtbarkeit:
Privat
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Li, Zheng1, Autor
Zhao, Yue1, Autor
Hu, Xiyang1, Autor
Botta, Nicola2, Autor              
Ionescu, Cezar1, Autor
Chen, George H.1, Autor
Affiliations:
1External Organizations, ou_persistent22              
2Potsdam Institute for Climate Impact Research, ou_persistent13              

Inhalt

einblenden:
ausblenden:
Schlagwörter: outlier detection; anomaly detection; distributed learning; scalability; empirical cumulative distribution function
 Zusammenfassung: Outlier detection refers to the identification of data points that deviate from a general data distribution. Existing unsupervised approaches often suffer from high computational cost, complex hyperparameter tuning, and limited interpretability, especially when working with large, high-dimensional datasets. To address these issues, we present a simple yet effective algorithm called ECOD (Empirical-Cumulative-distribution-based Outlier Detection), which is inspired by the fact that outliers are often the “rare events” that appear in the tails of a distribution. In a nutshell, ECOD first estimates the underlying distribution of the input data in a nonparametric fashion by computing the empirical cumulative distribution per dimension of the data. ECOD then uses these empirical distributions to estimate tail probabilities per dimension for each data point. Finally, ECOD computes an outlier score of each data point by aggregating estimated tail probabilities across dimensions. Our contributions are as follows: (1) we propose a novel outlier detection method called ECOD, which is both parameter-free and easy to interpret; (2) we perform extensive experiments on 30 benchmark datasets, where we find that ECOD outperforms 11 state-of-the-art baselines in terms of accuracy, efficiency, and scalability; and (3) we release an easy-to-use and scalable (with distributed support) Python implementation for accessibility and reproducibility.

Details

einblenden:
ausblenden:
Sprache(n): eng - Englisch
 Datum: 2022-03-052022-03-162023-12-01
 Publikationsstatus: Final veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1109/TKDE.2022.3159580
PIKDOMAIN: RD4 - Complexity Science
Organisational keyword: RD4 - Complexity Science
Model / method: Machine Learning
MDB-ID: No data to archive
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: IEEE Transactions on Knowledge and Data Engineering
Genre der Quelle: Zeitschrift, SCI, Scopus
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 35 (12) Artikelnummer: - Start- / Endseite: 12181 - 12193 Identifikator: CoNE: https://publications.pik-potsdam.de/cone/journals/resource/transactions-knowledge-data-engineering
Publisher: Institute of Electrical and Electronics Engineers (IEEE)