English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

ECOD: Unsupervised Outlier Detection Using Empirical Cumulative Distribution Functions

Authors

Li,  Zheng
External Organizations;

Zhao,  Yue
External Organizations;

Hu,  Xiyang
External Organizations;

/persons/resource/nicola.botta

Botta,  Nicola
Potsdam Institute for Climate Impact Research;

Ionescu,  Cezar
External Organizations;

Chen,  George H.
External Organizations;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PIKpublic
Supplementary Material (public)
There is no public supplementary material available
Citation

Li, Z., Zhao, Y., Hu, X., Botta, N., Ionescu, C., Chen, G. H. (2023): ECOD: Unsupervised Outlier Detection Using Empirical Cumulative Distribution Functions. - IEEE Transactions on Knowledge and Data Engineering, 35, 12, 12181-12193.
https://doi.org/10.1109/TKDE.2022.3159580


Cite as: https://publications.pik-potsdam.de/pubman/item/item_26927
Abstract
Outlier detection refers to the identification of data points that deviate from a general data distribution. Existing unsupervised approaches often suffer from high computational cost, complex hyperparameter tuning, and limited interpretability, especially when working with large, high-dimensional datasets. To address these issues, we present a simple yet effective algorithm called ECOD (Empirical-Cumulative-distribution-based Outlier Detection), which is inspired by the fact that outliers are often the “rare events” that appear in the tails of a distribution. In a nutshell, ECOD first estimates the underlying distribution of the input data in a nonparametric fashion by computing the empirical cumulative distribution per dimension of the data. ECOD then uses these empirical distributions to estimate tail probabilities per dimension for each data point. Finally, ECOD computes an outlier score of each data point by aggregating estimated tail probabilities across dimensions. Our contributions are as follows: (1) we propose a novel outlier detection method called ECOD, which is both parameter-free and easy to interpret; (2) we perform extensive experiments on 30 benchmark datasets, where we find that ECOD outperforms 11 state-of-the-art baselines in terms of accuracy, efficiency, and scalability; and (3) we release an easy-to-use and scalable (with distributed support) Python implementation for accessibility and reproducibility.