Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  GPU-based, interactive exploration of large spatiotemporal climate networks

Buschmann, S., Hoffmann, P., Agarwal, A., Marwan, N., Nocke, T. (2023): GPU-based, interactive exploration of large spatiotemporal climate networks. - Chaos, 33, 043129.
https://doi.org/10.1063/5.0131933

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
28339oa.pdf (Verlagsversion), 4MB
Name:
28339oa.pdf
Beschreibung:
-
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Buschmann, Stefan1, Autor
Hoffmann, Peter2, Autor              
Agarwal, Ankit1, Autor
Marwan, Norbert2, Autor              
Nocke, Thomas2, Autor              
Affiliations:
1External Organizations, ou_persistent22              
2Potsdam Institute for Climate Impact Research, Potsdam, ou_persistent13              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: This paper introduces the Graphics Processing Unit (GPU)-based tool Geo-Temporal eXplorer (GTX), integrating a set of highly interactive techniques for visual analytics of large geo-referenced complex networks from the climate research domain. The visual exploration of these networks faces a multitude of challenges related to the geo-reference and the size of these networks with up to several million edges and the manifold types of such networks. In this paper, solutions for the interactive visual analysis for several distinct types of large complex networks will be discussed, in particular, time-dependent, multi-scale, and multi-layered ensemble networks. Custom-tailored for climate researchers, the GTX tool supports heterogeneous tasks based on interactive, GPU-based solutions for on-the-fly large network data processing, analysis, and visualization. These solutions are illustrated for two use cases: multi-scale climatic process and climate infection risk networks. This tool helps one to reduce the complexity of the highly interrelated climate information and unveils hidden and temporal links in the climate system, not available using standard and linear tools (such as empirical orthogonal function analysis).

Details

einblenden:
ausblenden:
Sprache(n): eng - Englisch
 Datum: 2023-04-142023-04
 Publikationsstatus: Final veröffentlicht
 Seiten: 13
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1063/5.0131933
MDB-ID: yes - 3497
PIKDOMAIN: RD2 - Climate Resilience
Organisational keyword: RD2 - Climate Resilience
PIKDOMAIN: RD4 - Complexity Science
Organisational keyword: RD4 - Complexity Science
Research topic keyword: Complex Networks
Research topic keyword: Nonlinear Dynamics
Regional keyword: Global
Model / method: Nonlinear Data Analysis
Model / method: Research Software Engineering (RSE)
Working Group: Hydroclimatic Risks
OATYPE: Hybrid - American Institute of Physics
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Chaos
Genre der Quelle: Zeitschrift, SCI, Scopus, p3
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 33 Artikelnummer: 043129 Start- / Endseite: - Identifikator: CoNE: https://publications.pik-potsdam.de/cone/journals/resource/180808
Publisher: American Institute of Physics (AIP)