Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

GPU-based, interactive exploration of large spatiotemporal climate networks

Urheber*innen

Buschmann,  Stefan
External Organizations;

/persons/resource/peterh

Hoffmann,  Peter
Potsdam Institute for Climate Impact Research;

Agarwal,  Ankit
External Organizations;

/persons/resource/Marwan

Marwan,  Norbert
Potsdam Institute for Climate Impact Research;

/persons/resource/Thomas.Nocke

Nocke,  Thomas
Potsdam Institute for Climate Impact Research;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)

28339oa.pdf
(Verlagsversion), 4MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Buschmann, S., Hoffmann, P., Agarwal, A., Marwan, N., Nocke, T. (2023): GPU-based, interactive exploration of large spatiotemporal climate networks. - Chaos, 33, 043129.
https://doi.org/10.1063/5.0131933


Zitierlink: https://publications.pik-potsdam.de/pubman/item/item_28339
Zusammenfassung
This paper introduces the Graphics Processing Unit (GPU)-based tool Geo-Temporal eXplorer (GTX), integrating a set of highly interactive techniques for visual analytics of large geo-referenced complex networks from the climate research domain. The visual exploration of these networks faces a multitude of challenges related to the geo-reference and the size of these networks with up to several million edges and the manifold types of such networks. In this paper, solutions for the interactive visual analysis for several distinct types of large complex networks will be discussed, in particular, time-dependent, multi-scale, and multi-layered ensemble networks. Custom-tailored for climate researchers, the GTX tool supports heterogeneous tasks based on interactive, GPU-based solutions for on-the-fly large network data processing, analysis, and visualization. These solutions are illustrated for two use cases: multi-scale climatic process and climate infection risk networks. This tool helps one to reduce the complexity of the highly interrelated climate information and unveils hidden and temporal links in the climate system, not available using standard and linear tools (such as empirical orthogonal function analysis).