日本語
 
Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

  Mean exit times as global measure of resilience of tropical forest systems under climatic disturbances—Analytical and numerical results

Zheng, Y., & Boers, N. (2023). Mean exit times as global measure of resilience of tropical forest systems under climatic disturbances—Analytical and numerical results. Chaos, 33(11):. doi:10.1063/5.0158109.

Item is

基本情報

表示: 非表示:
資料種別: 学術論文

ファイル

表示: ファイル
非表示: ファイル
:
29275oa.pdf (出版社版), 2MB
ファイル名:
29275oa.pdf
説明:
-
閲覧制限:
公開
MIMEタイプ / チェックサム:
application/pdf / [MD5]
技術的なメタデータ:
著作権日付:
-
著作権情報:
-
CCライセンス:
-

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Zheng, Yayun1, 著者
Boers, Niklas2, 著者              
所属:
1External Organizations, ou_persistent22              
2Potsdam Institute for Climate Impact Research, ou_persistent13              

内容説明

表示:
非表示:
キーワード: -
 要旨: Both remotely sensed distribution of tree cover and models suggest three alternative stable vegetation states in the tropics: forest, savanna, and treeless states. Environmental fluctuation could cause critical transitions from the forest to the savanna state and quantifying the resilience of a given vegetation state is, therefore, crucial. While previous work has focused mostly on local stability concepts, we investigate here the mean exit time from a given basin of attraction, with partially absorbing and reflecting boundaries, as a global resilience measure. We provide detailed investigations using an established model for tropical tree cover with multistable precipitation regimes. We find that higher precipitation or weaker noise increases the mean exit time of the forest state and, thus, its resilience. Upon investigating the transition times from the forest state to other tree cover states, we find that in the bistable precipitation regime, the size of environmental fluctuations has a greater impact on the transition probabilities from the forest state compared to precipitation.

資料詳細

表示:
非表示:
言語: eng - 英語
 日付: 2023-11-292023-11-29
 出版の状態: Finally published
 ページ: 7
 出版情報: -
 目次: -
 査読: 査読あり
 識別子(DOI, ISBNなど): DOI: 10.1063/5.0158109
MDB-ID: No data to archive
PIKDOMAIN: RD4 - Complexity Science
Organisational keyword: FutureLab - Artificial Intelligence in the Anthropocene
Model / method: Nonlinear Data Analysis
Model / method: Machine Learning
Research topic keyword: Tipping Elements
OATYPE: Green Open Access
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: Chaos
種別: 学術雑誌, SCI, Scopus, p3
 著者・編者:
所属:
出版社, 出版地: -
ページ: - 巻号: 33 (11) 通巻号: 113136 開始・終了ページ: - 識別子(ISBN, ISSN, DOIなど): CoNE: https://publications.pik-potsdam.de/cone/journals/resource/180808
Publisher: American Institute of Physics (AIP)