English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  A comparison of two causal methods in the context of climate analyses

Docquier, D., Di Capua, G., Donner, R. V., Pires, C. A. L., Simon, A., Vannitsem, S. (2024): A comparison of two causal methods in the context of climate analyses. - Nonlinear Processes in Geophysics, 31, 1, 115-136.
https://doi.org/10.5194/npg-31-115-2024

Item is

Files

show Files
hide Files
:
29641oa.pdf (Publisher version), 3MB
Name:
29641oa.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show

Creators

show
hide
 Creators:
Docquier, David1, Author
Di Capua, Giorgia2, Author              
Donner, Reik V.2, Author              
Pires, Carlos A. L.1, Author
Simon, Amélie1, Author
Vannitsem, Stéphane1, Author
Affiliations:
1External Organizations, ou_persistent22              
2Potsdam Institute for Climate Impact Research, ou_persistent13              

Content

show
hide
Free keywords: -
 Abstract: Correlation does not necessarily imply causation, and this is why causal methods have been developed to try to disentangle true causal links from spurious relationships. In our study, we use two causal methods, namely, the Liang–Kleeman information flow (LKIF) and the Peter and Clark momentary conditional independence (PCMCI) algorithm, and we apply them to four different artificial models of increasing complexity and one real-world case study based on climate indices in the Atlantic and Pacific regions. We show that both methods are superior to the classical correlation analysis, especially in removing spurious links. LKIF and PCMCI display some strengths and weaknesses for the three simplest models, with LKIF performing better with a smaller number of variables and with PCMCI being best with a larger number of variables. Detecting causal links from the fourth model is more challenging as the system is nonlinear and chaotic. For the real-world case study with climate indices, both methods present some similarities and differences at monthly timescale. One of the key differences is that LKIF identifies the Arctic Oscillation (AO) as the largest driver, while the El Niño–Southern Oscillation (ENSO) is the main influencing variable for PCMCI. More research is needed to confirm these links, in particular including nonlinear causal methods.

Details

show
hide
Language(s): eng - English
 Dates: 2024-02-012024-02-272024-02-27
 Publication Status: Finally published
 Pages: 22
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.5194/npg-31-115-2024
MDB-ID: No data to archive
PIKDOMAIN: RD1 - Earth System Analysis
Organisational keyword: RD1 - Earth System Analysis
Working Group: Earth System Modes of Operation
OATYPE: Gold Open Access
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Nonlinear Processes in Geophysics
Source Genre: Journal, SCI, Scopus, p3, oa
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 31 (1) Sequence Number: - Start / End Page: 115 - 136 Identifier: CoNE: https://publications.pik-potsdam.de/cone/journals/resource/journals364
Publisher: Copernicus