日本語
 
Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

登録内容を編集ファイル形式で保存
 
 
ダウンロード電子メール
  Information Dynamics in Evolving Networks Based on the Birth-Death Process: Random Drift and Natural Selection Perspective

Feng, M., Zeng, Z., Li, Q., Perc, M., & Kurths, J. (2024). Information Dynamics in Evolving Networks Based on the Birth-Death Process: Random Drift and Natural Selection Perspective. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 54(8), 5123-5136. doi:10.1109/TSMC.2024.3389095.

Item is

基本情報

表示: 非表示:
資料種別: 学術論文

ファイル

表示: ファイル

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Feng, Minyu1, 著者
Zeng, Ziyan1, 著者
Li, Qin1, 著者
Perc, Matjaž1, 著者
Kurths, Jürgen2, 著者              
所属:
1External Organizations, ou_persistent22              
2Potsdam Institute for Climate Impact Research, ou_persistent13              

内容説明

表示:
非表示:
キーワード: -
 要旨: Dynamic processes in complex network are crucial for better understanding collective behavior in human societies, biological systems, and the Internet. In this article, we first focus on the continuous Markov-based modeling of evolving networks with the birth-death of individuals. A new individual arrives at the group by the Poisson process, while new links are established in the network through either uniform connection or preferential attachment. Moreover, an existing individual has a limited lifespan before leaving the network. We determine stationary topological properties of these networks, including their size and mean degree. To address the effect of the birth-death evolution, we further study the information dynamics in the proposed network model from the random drift and natural selection perspective, based on assumptions of total-stochastic and fitness-driven evolution, respectively. In simulations, we analyze the fixation probability of individual information and find that means of new connections affect the random drift process but do not affect the natural selection process.

資料詳細

表示:
非表示:
言語: eng - 英語
 日付: 2024-05-072024-08-01
 出版の状態: Finally published
 ページ: -
 出版情報: -
 目次: -
 査読: 査読あり
 識別子(DOI, ISBNなど): DOI: 10.1109/TSMC.2024.3389095
PIKDOMAIN: RD4 - Complexity Science
Organisational keyword: RD4 - Complexity Science
Research topic keyword: Complex Networks
Research topic keyword: Health
Research topic keyword: Nonlinear Dynamics
Model / method: Machine Learning
MDB-ID: No data to archive
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: IEEE Transactions on Systems, Man, and Cybernetics: Systems
種別: 学術雑誌, SCI, Scopus
 著者・編者:
所属:
出版社, 出版地: -
ページ: - 巻号: 54 (8) 通巻号: - 開始・終了ページ: 5123 - 5136 識別子(ISBN, ISSN, DOIなど): CoNE: https://publications.pik-potsdam.de/cone/journals/resource/IEEE-transactions-systems-man-cybernetics
Publisher: Institute of Electrical and Electronics Engineers (IEEE)