Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Information Dynamics in Evolving Networks Based on the Birth-Death Process: Random Drift and Natural Selection Perspective

Urheber*innen

Feng,  Minyu
External Organizations;

Zeng,  Ziyan
External Organizations;

Li,  Qin
External Organizations;

Perc,  Matjaž
External Organizations;

/persons/resource/Juergen.Kurths

Kurths,  Jürgen
Potsdam Institute for Climate Impact Research;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PIKpublic verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Feng, M., Zeng, Z., Li, Q., Perc, M., Kurths, J. (2024): Information Dynamics in Evolving Networks Based on the Birth-Death Process: Random Drift and Natural Selection Perspective. - IEEE Transactions on Systems, Man, and Cybernetics: Systems, 54, 8, 5123-5136.
https://doi.org/10.1109/TSMC.2024.3389095


Zitierlink: https://publications.pik-potsdam.de/pubman/item/item_30108
Zusammenfassung
Dynamic processes in complex network are crucial for better understanding collective behavior in human societies, biological systems, and the Internet. In this article, we first focus on the continuous Markov-based modeling of evolving networks with the birth-death of individuals. A new individual arrives at the group by the Poisson process, while new links are established in the network through either uniform connection or preferential attachment. Moreover, an existing individual has a limited lifespan before leaving the network. We determine stationary topological properties of these networks, including their size and mean degree. To address the effect of the birth-death evolution, we further study the information dynamics in the proposed network model from the random drift and natural selection perspective, based on assumptions of total-stochastic and fitness-driven evolution, respectively. In simulations, we analyze the fixation probability of individual information and find that means of new connections affect the random drift process but do not affect the natural selection process.