日本語
 
Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

  Uncertainties too large to predict tipping times of major Earth system components from historical data

Ben-Yami, M., Morr, A., Bathiany, S., & Boers, N. (2024). Uncertainties too large to predict tipping times of major Earth system components from historical data. Science Advances, 10(31):. doi:10.1126/sciadv.adl4841.

Item is

基本情報

表示: 非表示:
資料種別: 学術論文

ファイル

表示: ファイル
非表示: ファイル
:
Ben-Yami_2024_sciadv.adl4841.pdf (出版社版), 983KB
ファイル名:
Ben-Yami_2024_sciadv.adl4841.pdf
説明:
-
閲覧制限:
公開
MIMEタイプ / チェックサム:
application/pdf / [MD5]
技術的なメタデータ:
著作権日付:
-
著作権情報:
-

関連URL

表示:
非表示:
説明:
Code
説明:
Data

作成者

表示:
非表示:
 作成者:
Ben-Yami, Maya1, 2, 著者              
Morr, Andreas1, 著者              
Bathiany, Sebastian1, 著者              
Boers, Niklas1, 著者              
所属:
1Potsdam Institute for Climate Impact Research, ou_persistent13              
2Corresponding Author, Potsdam Institute for Climate Impact Research, ou_30129              

内容説明

表示:
非表示:
キーワード: -
 要旨: One way to warn of forthcoming critical transitions in Earth system components is using observations to detect declining system stability. It has also been suggested to extrapolate such stability changes into the future and predict tipping times. Here, we argue that the involved uncertainties are too high to robustly predict tipping times. We raise concerns regarding (i) the modeling assumptions underlying any extrapolation of historical results into the future, (ii) the representativeness of individual Earth system component time series, and (iii) the impact of uncertainties and preprocessing of used observational datasets, with focus on nonstationary observational coverage and gap filling. We explore these uncertainties in general and specifically for the example of the Atlantic Meridional Overturning Circulation. We argue that even under the assumption that a given Earth system component has an approaching tipping point, the uncertainties are too large to reliably estimate tipping times by extrapolating historical information.

資料詳細

表示:
非表示:
言語: eng - 英語
 日付: 2024-08-022024-08-02
 出版の状態: Finally published
 ページ: 11
 出版情報: -
 目次: -
 査読: 査読あり
 識別子(DOI, ISBNなど): DOI: 10.1126/sciadv.adl4841
PIKDOMAIN: RD4 - Complexity Science
Organisational keyword: RD4 - Complexity Science
Organisational keyword: FutureLab - Artificial Intelligence in the Anthropocene
Research topic keyword: Climate impacts
Research topic keyword: Nonlinear Dynamics
Research topic keyword: Oceans
Research topic keyword: Tipping Elements
Regional keyword: Global
Model / method: Nonlinear Data Analysis
MDB-ID: No MDB - stored outside PIK (see locators/paper)
OATYPE: Gold Open Access
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: Science Advances
種別: 学術雑誌, SCI, Scopus, p3, oa
 著者・編者:
所属:
出版社, 出版地: -
ページ: - 巻号: 10 (31) 通巻号: eadl4841 開始・終了ページ: - 識別子(ISBN, ISSN, DOIなど): CoNE: https://publications.pik-potsdam.de/cone/journals/resource/161027
Publisher: American Association for the Advancement of Science (AAAS)