Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Involution symmetry quantification using recurrences

Marghoti, G., Prado, T. d. L., Lopes, S. R., Hirata, Y. (2024): Involution symmetry quantification using recurrences. - Physical Review E, 110, 2, 024203.
https://doi.org/10.1103/PhysRevE.110.024203

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
marghoti_2024_PhysRevE.110.024203.pdf (Verlagsversion), 5MB
 
Datei-Permalink:
-
Name:
marghoti_2024_PhysRevE.110.024203.pdf
Beschreibung:
-
Sichtbarkeit:
Privat
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Marghoti, Gabriel1, Autor
Prado, Thiago de Lima1, Autor
Lopes, Sergio Roberto2, Autor              
Hirata, Yoshito1, Autor
Affiliations:
1External Organizations, ou_persistent22              
2Potsdam Institute for Climate Impact Research, ou_persistent13              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Symmetries are ubiquitous in science, aiding theoretical comprehension by discerning patterns in mathematical models and natural phenomena. This work introduces a method for assessing the extent of symmetry within a time series. We explore both microscopic and macroscopic features extracted from a recurrence plot. By analyzing the statistics of small recurrence matrices, our approach delves into microscale dynamics, facilitating the identification of symmetric time series segments through diagonal macroscale structures on a recurrence plot. We validate our approach by successfully quantifying involution symmetries for three-dimensional dynamical models, specifically, order-2 rotational symmetry in the Lorenz '63 model, and inversion symmetry in the Chua circuit. Our quantifier also detects symmetry breaking in the modified Lorenz model for El Niño phenomenon. The method can be applied in a versatile manner, not only to three-dimensional trajectories but also to univariate time series. Symmetry quantification in time series is promising for enhancing dynamical system modeling and profiling.

Details

einblenden:
ausblenden:
Sprache(n): eng - Englisch
 Datum: 2024-08-052024-08-01
 Publikationsstatus: Final veröffentlicht
 Seiten: 8
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1103/PhysRevE.110.024203
MDB-ID: No data to archive
PIKDOMAIN: RD4 - Complexity Science
Organisational keyword: RD4 - Complexity Science
Research topic keyword: Nonlinear Dynamics
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Physical Review E
Genre der Quelle: Zeitschrift, SCI, Scopus, p3
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 110 (2) Artikelnummer: 024203 Start- / Endseite: - Identifikator: CoNE: https://publications.pik-potsdam.de/cone/journals/resource/150218
Publisher: American Physical Society (APS)