Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Involution symmetry quantification using recurrences

Urheber*innen

Marghoti,  Gabriel
External Organizations;

Prado,  Thiago de Lima
External Organizations;

/persons/resource/lopes.sergio

Lopes,  Sergio Roberto
Potsdam Institute for Climate Impact Research;

Hirata,  Yoshito
External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PIKpublic verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Marghoti, G., Prado, T. d. L., Lopes, S. R., Hirata, Y. (2024): Involution symmetry quantification using recurrences. - Physical Review E, 110, 2, 024203.
https://doi.org/10.1103/PhysRevE.110.024203


Zitierlink: https://publications.pik-potsdam.de/pubman/item/item_30571
Zusammenfassung
Symmetries are ubiquitous in science, aiding theoretical comprehension by discerning patterns in mathematical models and natural phenomena. This work introduces a method for assessing the extent of symmetry within a time series. We explore both microscopic and macroscopic features extracted from a recurrence plot. By analyzing the statistics of small recurrence matrices, our approach delves into microscale dynamics, facilitating the identification of symmetric time series segments through diagonal macroscale structures on a recurrence plot. We validate our approach by successfully quantifying involution symmetries for three-dimensional dynamical models, specifically, order-2 rotational symmetry in the Lorenz '63 model, and inversion symmetry in the Chua circuit. Our quantifier also detects symmetry breaking in the modified Lorenz model for El Niño phenomenon. The method can be applied in a versatile manner, not only to three-dimensional trajectories but also to univariate time series. Symmetry quantification in time series is promising for enhancing dynamical system modeling and profiling.