日本語
 
Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

登録内容を編集ファイル形式で保存
 
 
ダウンロード電子メール
  Climate model downscaling in central Asia: a dynamical and a neural network approach

Fallah, B. H., Rostami, M., Russo, E., Harder, P., Menz, C., Hoffmann, P., Didovets, I., & Hattermann, F. F. (2025). Climate model downscaling in central Asia: a dynamical and a neural network approach. Geoscientific Model Development, 18(1), 161-180.

Item is

基本情報

表示: 非表示:
資料種別: 学術論文

ファイル

表示: ファイル
非表示: ファイル
:
30596oa.pdf (出版社版), 13MB
ファイル名:
30596oa.pdf
説明:
-
閲覧制限:
公開
MIMEタイプ / チェックサム:
application/pdf / [MD5]
技術的なメタデータ:
著作権日付:
-
著作権情報:
-

関連URL

表示:
非表示:
URL:
https://doi.org/10.5194/gmd-2023-227 (プレプリント)
説明:
-

作成者

表示:
非表示:
 作成者:
Fallah, Bijan H.1, 2, 著者              
Rostami, Masoud1, 著者              
Russo, Emmanuele3, 著者
Harder, Paula3, 著者
Menz, Christoph1, 著者              
Hoffmann, Peter1, 著者              
Didovets, Iulii1, 著者              
Hattermann, Fred Fokko1, 著者              
所属:
1Potsdam Institute for Climate Impact Research, ou_persistent13              
2Submitting Corresponding Author, Potsdam Institute for Climate Impact Research, ou_29970              
3External Organizations, ou_persistent22              

内容説明

表示:
非表示:
キーワード: -
 要旨: To estimate future climate change impacts, usually high-resolution climate projections are necessary. Statistical and dynamical downscaling or a hybrid of both methods are mostly used to produce input datasets for impact modelers. In this study, we use the regional climate model (RCM) COSMO-CLM (CCLM) version 6.0 to identify the added value of dynam- ically downscaling a general circulation model (GCM) from the sixth phase of the Coupled Model Inter-comparison Project (CMIP6) and its climate change projections’ signal over Central Asia (CA). We use the MPI-ESM1-2-HR (at 1° spatial reso-5 lution) to drive the CCLM (at 0.22° horizontal resolution) for the historical period of 1985-2014 and the projection period of 2019-2100 under three different shared socioeconomic pathways (SSPs): SSP1-2.6, SSP3-7.0 and SSP5-8.5 scenarios. Using the Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) gridded observation dataset, we evaluate the CCLM performance over the historical period using a simulation driven by ERAInterim reanalysis. CCLM’s added value, com- pared to its driving GCM, is significant over CA mountainous areas, which are at higher risk of extreme precipitation events.10 Furthermore, we downscale the CCLM for future climate projections. We present high-resolution maps of heavy precipitation changes based on CCLM and compare them with CMIP6 GCMs ensemble. Our analysis shows a significant increase in heavy precipitation intensity and frequency over CA areas that are already at risk of extreme climatic events in the present day. Fi- nally, applying our single model high-resolution dynamical downscaling, we train a convolutional neural network (CNN) to map the low-resolution GCM simulations to the dynamically downscaled CCLM ones. We show that applied CNN could em-15 ulate the GCM-CCLM model chain over large CA areas. However, this specific emulator has shortcomings when applied to a new GCM-CCLM model chain. Our downscaling data and the pre-trained CNN model could be used by scientific communities interested in downscaling CMIP6 models and searching for a trade-off between the dynamical and statistical methods.

資料詳細

表示:
非表示:
言語: eng - 英語
 日付: 2023-12-052024-11-192025-01-152025-01-15
 出版の状態: Finally published
 ページ: 20
 出版情報: -
 目次: -
 査読: 査読あり
 識別子(DOI, ISBNなど): Organisational keyword: RD2 - Climate Resilience
PIKDOMAIN: RD2 - Climate Resilience
PIKDOMAIN: RD1 - Earth System Analysis
Organisational keyword: RD1 - Earth System Analysis
Working Group: Hydroclimatic Risks
MDB-ID: No data to archive
Regional keyword: Asia
Model / method: Machine Learning
Model / method: Nonlinear Data Analysis
Research topic keyword: Atmosphere
Research topic keyword: Weather
OATYPE: Gold Open Access
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: Geoscientific Model Development
種別: 学術雑誌, SCI, Scopus, p3, oa
 著者・編者:
所属:
出版社, 出版地: -
ページ: - 巻号: 18 (1) 通巻号: - 開始・終了ページ: 161 - 180 識別子(ISBN, ISSN, DOIなど): CoNE: https://publications.pik-potsdam.de/cone/journals/resource/journals185
Publisher: Copernicus