日本語
 
Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

  Distributed Event-Triggered Learning-Based Control for Battery Energy Storage Systems Under Persistent False Data Injection Attacks

Wan, Y., Wen, G., Yu, X., Kurths, J., & Chen, Z. (2024). Distributed Event-Triggered Learning-Based Control for Battery Energy Storage Systems Under Persistent False Data Injection Attacks. IEEE Transactions on Smart Grid, 15(5), 4986-4997. doi:10.1109/TSG.2024.3370912.

Item is

基本情報

表示: 非表示:
資料種別: 学術論文

ファイル

表示: ファイル

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Wan, Ying1, 著者
Wen, Guanghui1, 著者
Yu, Xinghuo1, 著者
Kurths, Jürgen2, 著者              
Chen, Zhiyi1, 著者
所属:
1External Organizations, ou_persistent22              
2Potsdam Institute for Climate Impact Research, ou_persistent13              

内容説明

表示:
非表示:
キーワード: -
 要旨: This paper aims to address distributed event-triggered learning-based secure control for multiple battery energy storage systems (BESSs) under persistent false-date injection (FDI) attacks. To tackle FDI attacks and also save communication resources, a distributed learning-based secure control based on a dynamic event-triggered framework is established. This control scheme uses an adaptive law to update the estimation matrix for a neural network (NN) approximator, using only relative state variables at triggered instants. To ensure uniform boundedness of all variables involved in the update law, a proper projection operator is introduced. Additionally, the updated law incorporates a low-pass filter structure, which can suppress unfavorable high-frequency oscillations when a high-gain learning rate is applied. It is rigorously proven that under such distributed event-triggered learning-based control protocols, frequency regulation, active power sharing, and SoC balancing can be achieved with arbitrary accuracy by adjusting the learning rates and control parameters. Finally, real-time simulations of the IEEE 57-bus system are performed using OPAL-RT to illustrate the efficacy of the developed learning strategy.

資料詳細

表示:
非表示:
言語: eng - 英語
 日付: 2024-02-282024-09-01
 出版の状態: Finally published
 ページ: -
 出版情報: -
 目次: -
 査読: 査読あり
 識別子(DOI, ISBNなど): DOI: 10.1109/TSG.2024.3370912
MDB-ID: No data to archive
PIKDOMAIN: RD4 - Complexity Science
Organisational keyword: RD4 - Complexity Science
Research topic keyword: Sustainable Development
Model / method: Nonlinear Data Analysis
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: IEEE Transactions on Smart Grid
種別: 学術雑誌, SCI, Scopus
 著者・編者:
所属:
出版社, 出版地: -
ページ: - 巻号: 15 (5) 通巻号: - 開始・終了ページ: 4986 - 4997 識別子(ISBN, ISSN, DOIなど): CoNE: https://publications.pik-potsdam.de/cone/journals/resource/1949-3061
Publisher: Institute of Electrical and Electronics Engineers (IEEE)