Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Distributed Event-Triggered Learning-Based Control for Battery Energy Storage Systems Under Persistent False Data Injection Attacks

Urheber*innen

Wan,  Ying
External Organizations;

Wen,  Guanghui
External Organizations;

Yu,  Xinghuo
External Organizations;

/persons/resource/Juergen.Kurths

Kurths,  Jürgen
Potsdam Institute for Climate Impact Research;

Chen,  Zhiyi
External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PIKpublic verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Wan, Y., Wen, G., Yu, X., Kurths, J., Chen, Z. (2024): Distributed Event-Triggered Learning-Based Control for Battery Energy Storage Systems Under Persistent False Data Injection Attacks. - IEEE Transactions on Smart Grid, 15, 5, 4986-4997.
https://doi.org/10.1109/TSG.2024.3370912


Zitierlink: https://publications.pik-potsdam.de/pubman/item/item_30775
Zusammenfassung
This paper aims to address distributed event-triggered learning-based secure control for multiple battery energy storage systems (BESSs) under persistent false-date injection (FDI) attacks. To tackle FDI attacks and also save communication resources, a distributed learning-based secure control based on a dynamic event-triggered framework is established. This control scheme uses an adaptive law to update the estimation matrix for a neural network (NN) approximator, using only relative state variables at triggered instants. To ensure uniform boundedness of all variables involved in the update law, a proper projection operator is introduced. Additionally, the updated law incorporates a low-pass filter structure, which can suppress unfavorable high-frequency oscillations when a high-gain learning rate is applied. It is rigorously proven that under such distributed event-triggered learning-based control protocols, frequency regulation, active power sharing, and SoC balancing can be achieved with arbitrary accuracy by adjusting the learning rates and control parameters. Finally, real-time simulations of the IEEE 57-bus system are performed using OPAL-RT to illustrate the efficacy of the developed learning strategy.