Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Early warning of complex climate risk with integrated artificial intelligence

Reichstein, M., Benson, V., Blunk, J., Camps-Valls, G., Creutzig, F., Fearnley, C. J., Han, B., Kornhuber, K., Rahaman, N., Schölkopf, B., Tárraga, J. M., Vinuesa, R., Dall, K., Denzler, J., Frank, D., Martini, G., Nganga, N., Maddix, D. C., Weldemariam, K. (2025): Early warning of complex climate risk with integrated artificial intelligence. - Nature Communications, 16, 2564.
https://doi.org/10.1038/s41467-025-57640-w

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
s41467-025-57640-w.pdf (Verlagsversion), 2MB
Name:
s41467-025-57640-w.pdf
Beschreibung:
-
OA-Status:
Gold
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Reichstein, Markus1, Autor
Benson, Vitus1, Autor
Blunk, Jan1, Autor
Camps-Valls, Gustau1, Autor
Creutzig, Felix2, Autor                 
Fearnley, Carina J.1, Autor
Han, Boran1, Autor
Kornhuber, Kai1, Autor
Rahaman, Nasim1, Autor
Schölkopf, Bernhard1, Autor
Tárraga, José María1, Autor
Vinuesa, Ricardo1, Autor
Dall, Karen1, Autor
Denzler, Joachim1, Autor
Frank, Dorothea1, Autor
Martini, Giulia1, Autor
Nganga, Naomi1, Autor
Maddix, Danielle C.1, Autor
Weldemariam, Kommy1, Autor
Affiliations:
1External Organizations, ou_persistent22              
2Potsdam Institute for Climate Impact Research, Potsdam, ou_persistent13              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: As climate change accelerates, human societies face growing exposure to disasters and stress, highlighting the urgent need for effective early warning systems (EWS). These systems monitor, assess, and communicate risks to support resilience and sustainable development, but challenges remain in hazard forecasting, risk communication, and decision-making. This perspective explores the transformative potential of integrated Artificial Intelligence (AI) modeling. We highlight the role of AI in developing multi-hazard EWSs that integrate Meteorological and Geospatial foundation models (FMs) for impact prediction. A user-centric approach with intuitive interfaces and community feedback is emphasized to improve crisis management. To address climate risk complexity, we advocate for causal AI models to avoid spurious predictions and stress the need for responsible AI practices. We highlight the FATES (Fairness, Accountability, Transparency, Ethics, and Sustainability) principles as essential for equitable and trustworthy AI-based Early Warning Systems for all. We further advocate for decadal EWSs, leveraging climate ensembles and generative methods to enable long-term, spatially resolved forecasts for proactive climate adaptation.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2024-05-122025-02-272025-03-152025-03-15
 Publikationsstatus: Final veröffentlicht
 Seiten: 13
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1038/s41467-025-57640-w
PIKDOMAIN: RD5 - Climate Economics and Policy - MCC Berlin
Organisational keyword: RD5 - Climate Economics and Policy - MCC Berlin
Working Group: Cities: Data Science and Sustainable Planning
Research topic keyword: Climate impacts
Research topic keyword: Ecosystems
MDB-ID: No data to archive
OATYPE: Gold Open Access
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Nature Communications
Genre der Quelle: Zeitschrift, SCI, Scopus, p3, oa
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 16 Artikelnummer: 2564 Start- / Endseite: - Identifikator: CoNE: https://publications.pik-potsdam.de/cone/journals/resource/journals354
Publisher: Nature